JACOBS[™]

Whitelee Windfarm

Post Construction Groundwater Quality Monitoring Report

November 2009

Post Construction Groundwater Quality Monitoring, Report - November 2009

Client: Scottish Power

Project: Whitelee Windfarm

Document Title: Post Construction Groundwater Quality

Monitoring Report

Job No: B0627819

ater Qu	Originator	Checked by	Reviewed by	Approved by
ORIGINAL	NAME	NAME	NAME	NAME
	Stewart Easton	Dave Cooke	Stewart Drennan	Gordon McGregor
03/11/09	SGNATURE	SIGNATURE	SIDrong	SIGNATURE CARE
Document Status			insell, et al.	0

REVISION	NAME	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE	SIGNATURE
Document Status				

REVISION	NAME	NAME	NAME	NAME
DATE	SIGNATURE	SIGNATURE	SIGNATURE	SIGNATURE
Document Statu	 JS			

Jacobs Engineering U.K. Limited

This document has been prepared by a division, subsidiary or affiliate of Jacobs Engineering U.K. Limited ("Jacobs") in its professional capacity as consultants in accordance with the terms and conditions of Jacobs' contract with the commissioning party (the "Client"). Regard should be had to those terms and conditions when considering and/or placing any reliance on this document. No part of this document may be copied or reproduced by any means without prior written permission from Jacobs. If you have received this document in error, please destroy all copies in your possession or control and notify Jacobs.

Any advice, opinions, or recommendations within this document (a) should be read and relied upon only in the context of the document as a whole; (b) do not, in any way, purport to include any manner of legal advice or opinion; (c) are based upon the information made available to Jacobs at the date of this document and on current UK standards, codes, technology and construction practices as at the date of this document. It should be noted and it is expressly stated that no independent verification of any of the documents or information supplied to Jacobs has been made. No liability is accepted by Jacobs for any use of this document, other than for the purposes for which it was originally prepared and provided. Following final delivery of this document to the Client, Jacobs will have no further obligations or duty to advise the Client on any matters, including development affecting the information or advice provided in this document.

This document has been prepared for the exclusive use of the Client and unless otherwise agreed in writing by Jacobs, no other party may use, make use of or rely on the contents of this document. Should the Client wish to release this document to a third party, Jacobs may, at its discretion, agree to such release provided that (a) Jacobs' written agreement is obtained prior to such release; and (b) by release of the document to the third party, that third party does not acquire any rights, contractual or otherwise, whatsoever against Jacobs and Jacobs, accordingly, assume no duties, liabilities or obligations to that third party; and (c) Jacobs accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Jacobs' interests arising out of the Client's release of this document to the third party.

Post Construction Groundwater Quality Monitoring, Report – November 2009

Contents

1	Introduction	1
2	Previous Monthly Groundwater Monitoring	1
3	Previous Monthly Groundwater Monitoring Conclusions	2
4	Post Construction Groundwater Monitoring	3
5	Groundwater Levels	3
6	In situ water quality data	3
7	Groundwater Laboratory Results and Trends	4
8	Conclusions and recommendations	6

Figures

Figure 1 – Monitoring Hole Location Plan

Appendices

Appendix A – Graphs

Appendix B – Laboratory Data Summary Tables

Appendix C -In situ water quality results and weather conditions

Appendix D – Borehole Logs

Appendix E – Laboratory Results (September 2009)

Post Construction Groundwater Quality Monitoring, Report – November 2009

1 Introduction

- Jacobs was commissioned by ScottishPower plc to undertake a programme of groundwater monitoring and sampling, laboratory testing and subsequent assessment and reporting at Whitelee Windfarm site, Eaglesham Moor, near East Kilbride. The aim of the work was to provide data to assist in the assessment of whether the windfarm development was having any impact on local groundwater quality.
- Monitoring started in July 2006 prior to any construction work (access track construction first commenced in October 2006 and turbine foundation construction in December 2006) and continued on a monthly basis until September 2008.
- 1.3 Construction works have since been completed and the windfarm was officially opened and became operational in May 2009. Following the completion of the construction works, ScottishPower commissioned Jacobs to undertake a further round of groundwater sampling and laboratory testing for comparison with the previously collected data.

2 Previous Monthly Groundwater Monitoring

- 2.1 The monthly monitoring of boreholes was undertaken over a period of 26 months. Over the monitoring period, a number of boreholes were added and removed by Scottish Power as the site activities developed. The details of the locations monitored throughout the construction period are provided within the Jacobs Whitelee Windfarm, Groundwater Quality Monitoring Report July 06 to September 08.
- 2.2 A location plan for all the boreholes monitored during the work is provided as Figure 1 in this report.
- 2.3 The laboratory analysis requirements were stipulated by ScottishPower at the outset of the project, however, in response to comments from the Planning Monitoring Officer, additional analytes were added to the testing schedule in August and September 2007.
- 2.4 Groundwater samples were submitted from each monitoring round for the following laboratory analysis by Scientific Analysis Laboratories Ltd, East Kilbride:
 - Aluminium
 - Calcium
 - Sodium
 - Magnesium
 - Iron
 - Chloride
 - Total petroleum hydrocarbons (TPH)
 - Volatile organic compounds (VOCs)
 - Semi-volatile organic compounds (SVOCs).
 - pH (added in August 2007)

Post Construction Groundwater Quality Monitoring, Report - November 2009

- Electrical conductivity (added in August 2007)
- Alkalinity (added in August 2007)
- Total sulphate (added in August 2007)
- Total organic carbon (added in September 2007)
- 2.5 Prior to sampling, all boreholes were first dipped to record groundwater levels and the level of the base. They were then purged to 3 well volumes, with field monitoring of pH, electrical conductivity and temperature taken prior to water sampling into laboratory supplied bottles for subsequent analysis.
- 2.6 From November 2007, groundwater samples scheduled for metal analysis were filtered through a 0.45 micron filter on site.
- 2.7 Weather conditions for the site monitoring visits were recorded and are provided in Appendix C.
- 3 Previous Monthly Groundwater Monitoring Conclusions
- 3.1 Monitoring boreholes are located mainly within peaty strata, underlain by clayey glacial alluvium. One borehole is installed with wellscreen open only to a sand and gravel aquifer beneath the peat. This borehole has different chemistry to water from boreholes that have wellscreen across both shallower peat horizons and underlying clayey alluvium (and are assumed to provide mixed samples from both horizons).
 - No seasonal or spatial patterns were identified in the groundwater monitoring data from the monthly monitoring.
- Aluminium and iron were noted to exceed the adopted generic assessment criteria (GAC) on occasion although this was not correlated to identifiable site activities or other changes in conditions at the site. Measured iron and aluminium concentrations were considered to represent normal background levels for the monitored groundwater bodies.
- A number of SVOC compounds were detected at low levels during various monitoring rounds. The detection of these SVOC compounds is thought to have been caused by cross contamination within the laboratory and the contaminants are not considered to be present on the site.
- 3.4 From the data collected during the monthly groundwater monitoring, it was concluded that groundwater quality at the Whitelee site did not appear to have been impacted by the construction of the windfarm.

Post Construction Groundwater Quality Monitoring, Report – November 2009

4 Post Construction Groundwater Monitoring

- 4.1 The post construction monitoring of boreholes was undertaken on 17th September 2009. Monitoring and subsequent sampling was carried out at the remaining five boreholes, CP02 and WP01 WP04.
- 4.2 Boreholes WP01 WP04 are screened across both peat and the deeper alluvial deposits of mainly silt and clay whereas CP02 is the borehole screened across deposits of sand and gravel only below the peat horizon.
- 4.3 Groundwater samples were obtained from each of the boreholes and were analysed for the same parameters as the final monthly monitoring round in September 2008.
- As with all other monitoring rounds, the boreholes were first dipped to record groundwater levels and the level of the base. They were then purged to 3 well volumes, with field monitoring of pH and temperature taken prior to water sampling for subsequent laboratory testing. Electrical conductivity readings were not recorded in the field due to instrument failure.

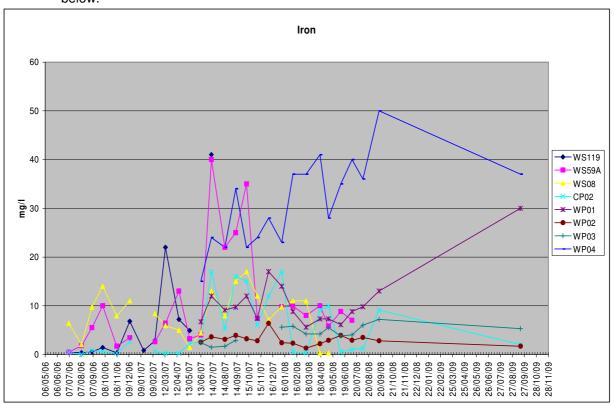
5 Groundwater Levels

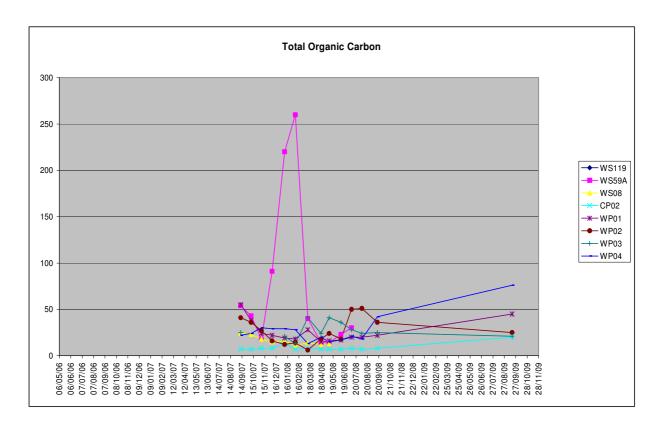
- Boreholes WP01 WP04 had groundwater levels between 0.13mbgl and 0.33mbgl whereas the groundwater level at CP02 was recorded at 2.97mbgl. The groundwater levels taken during the post construction monitoring round appear to be fairly consistent with the levels previously recorded during the monthly monitoring.
- 5.2 All monitored boreholes were clear to the base of the response zone with no signs of blockage or siltation.

6 In situ water quality data

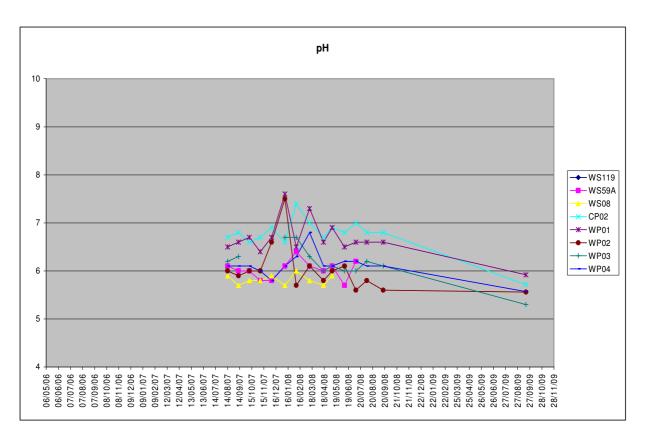
- 6.1 Water quality indicators are recorded in situ using a water quality kit capable of measuring pH, electrical conductivity, and temperature. Full water quality results for all rounds of monitoring are contained within Appendix C.
- Ranges for pH, electrical conductivity, and temperature for all monitoring locations are detailed within graphs contained in Appendix C. It should be noted that pH data is not available for December 2007 and conductivity data for September 2009 due to instrument failure.
- Ranges for laboratory tested electrical conductivity and pH parameters are also detailed graphically within Appendix C.

Post Construction Groundwater Quality Monitoring, Report - November 2009


No trends or patterns were evident from the conductivity or temperature results, however, the deeper groundwater samples obtained from CP02 do as expected have consistently higher conductivity values. For pH values, a decreasing trend is evident with the post construction monitoring round recording the lowest pH values at each of the monitored boreholes.


7 Groundwater Laboratory Results and Trends

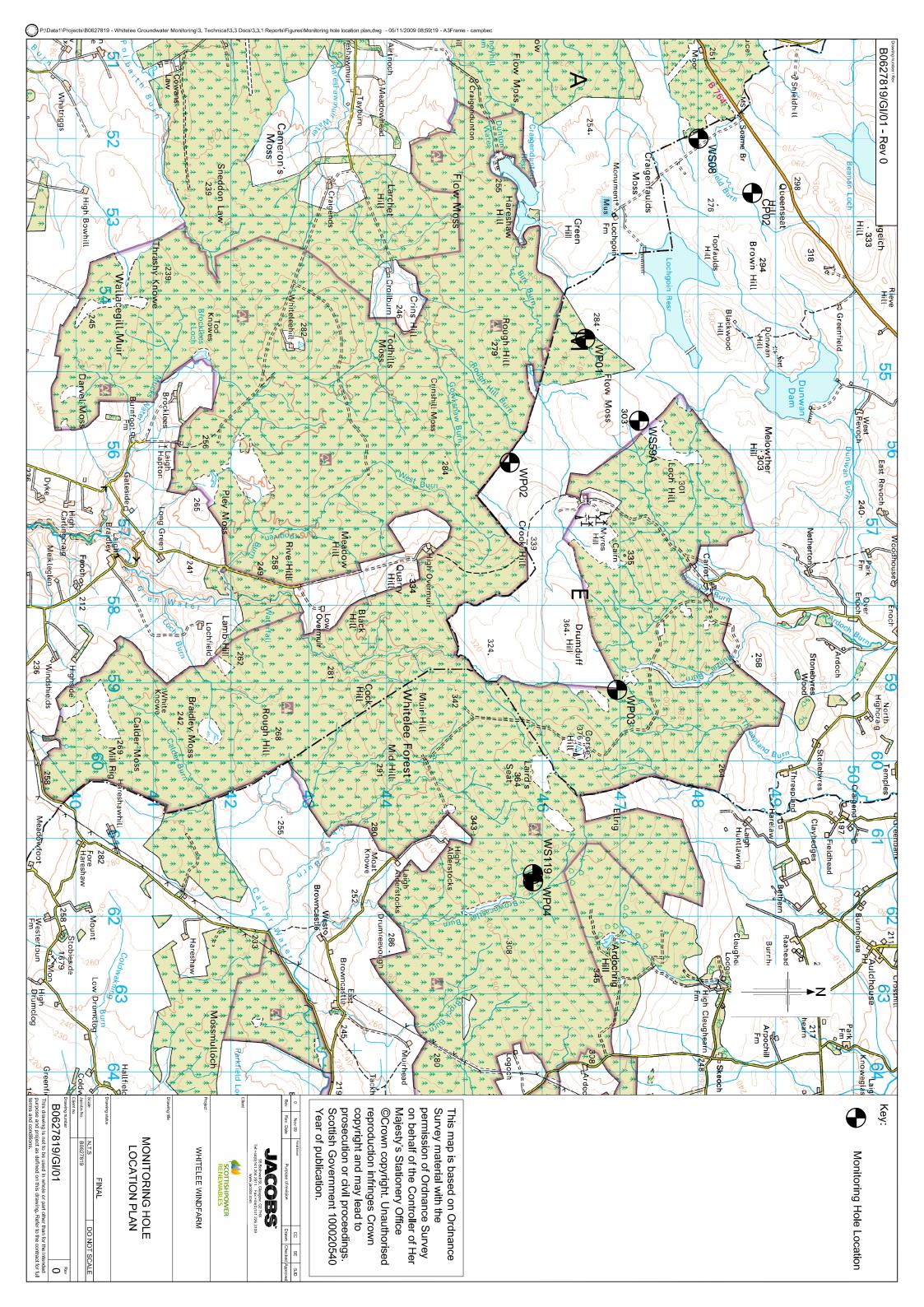
- 7.1 The results of the analyses are compared with the previously adopted GAC, drawn from selected Drinking Water Standards (DWS) or Environmental Quality Standards (EQS) for freshwater where no DWS values are available. The results from the analysis of the latest samples have been combined with all monthly monitoring rounds and are graphically summarised in Appendix A and tabulated in Appendix B. The laboratory analytical certificates can be found in Appendix E.
- Groundwater quality recorded during the period of July 2006 to September 2006 has been considered as baseline groundwater quality for this site, as it was carried out prior to the commencement of construction previously noted, aluminium and iron concentrations have been recorded in all boreholes at concentrations in exceedence of the relevant GAC throughout the period of monitoring.
- 7.3 Comparison of post construction data against the historical dataset showed no increasing or decreasing trends for calcium, magnesium and aluminium at any of the boreholes with the graphs showing the results at each borehole being relatively steady across the monitoring rounds. The graphs also showed that sodium and chloride concentrations across all boreholes were slightly decreasing with time, a trend that appears to have continued into 2009.
- 7.4 Conversely, the highest total petroleum hydrocarbons (TPH) concentration was recorded in the post construction monitoring round at WP04, with TPH concentrations across all the boreholes having increased in this round compared with the previous round. It is noted that this increase in TPH concentration was not part of an established trend and it is therefore possible that these elevated results are a one off event (as has been observed for a number of parameters during the historical monitoring work).
- A number of phenols, chlorinated phenols and plasticizers have been detected in WP01 over the course of the monthly monitoring with 3/4-methylphenol being detected since May 2008 and also being detected at this location during this post construction monitoring round. The maximum concentration of 3/4-methylphenol was recorded during the post construction monitoring with a value of 120ug/l being recorded which is above the EQS for phenol of 30ug/l. An increasing trend of 3/4-methylphenol values was observed at WP01.


Post Construction Groundwater Quality Monitoring, Report – November 2009

The maximum concentration of iron at WP01 and TOC at WP04 was recorded during the post construction monitoring round. Iron and total organic carbon (TOC) were both observed at WP01 and WP04 to have an increasing trend and a decreasing trend of pH values was observed across all boreholes. These trends are illustrated in the graphs below.

Post Construction Groundwater Quality Monitoring, Report – November 2009

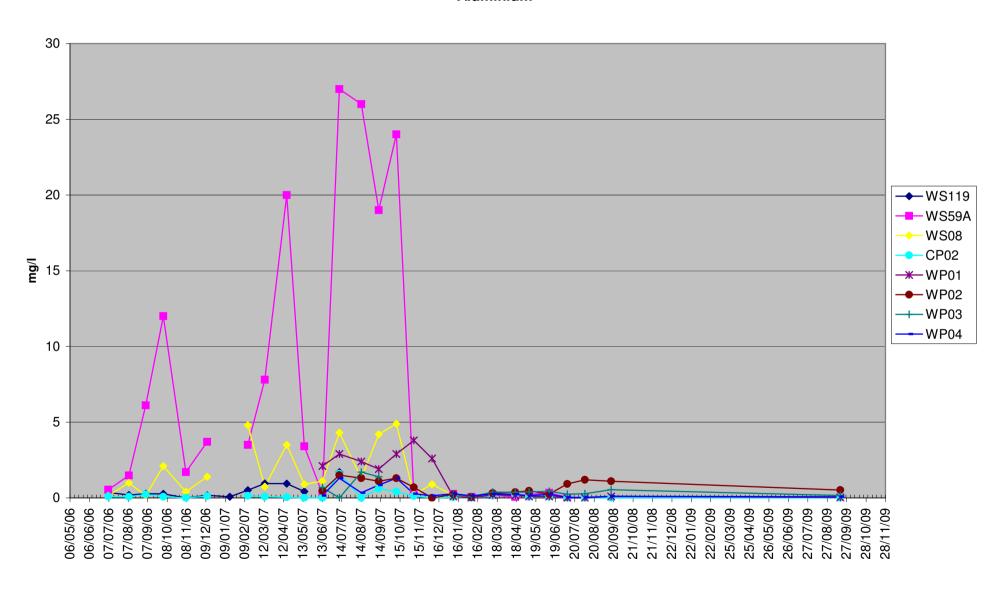
8 Conclusions and recommendations

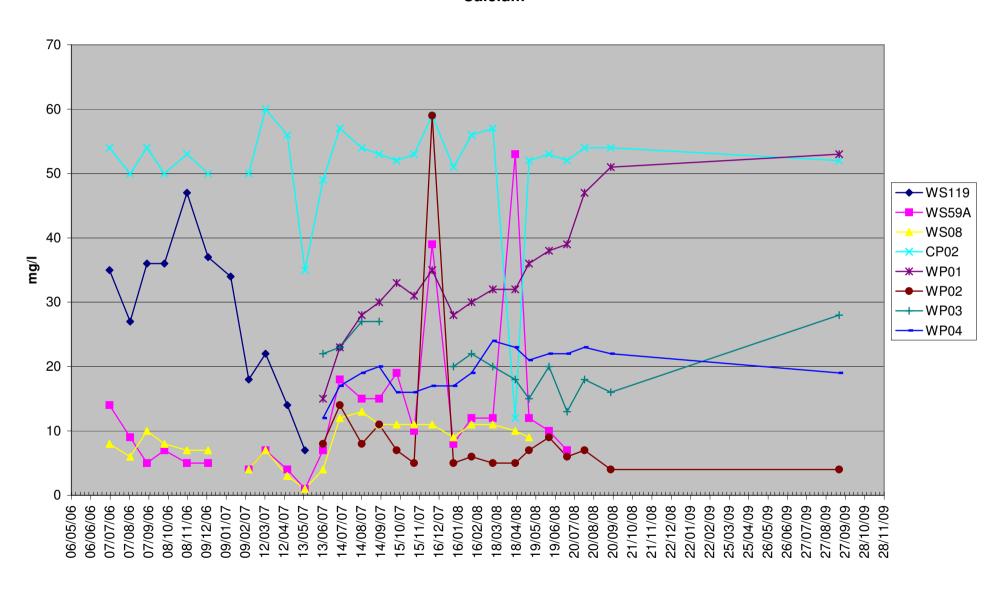

- 8.1 Throughout the monthly monitoring period and from the post construction monitoring, localised increases in the concentration of contaminants have been observed, but cannot be correlated to identifiable site activities or other changes in conditions at the site. It is noted that such peaks and troughs in the concentration of dissolved species are not limited to particular parts of the site and are assumed to represent the intrinsic variability of the sampling and analytical procedures adopted, coupled with any natural variations due to changes in infiltration, percolation through the soil and sub-surface water flow.
- 8.2 Nevertheless, the post construction samples did show continuation of increasing trends of iron and total organic carbon at both WP01 and WP04 and a decreasing trend of pH values across all boreholes. An increasing trend for 3/4-methylphenol was also recorded at WP01. An increase in TPH concentrations was also observed, with higher levels of TPH being recorded at each borehole in this round compared to the previous round.

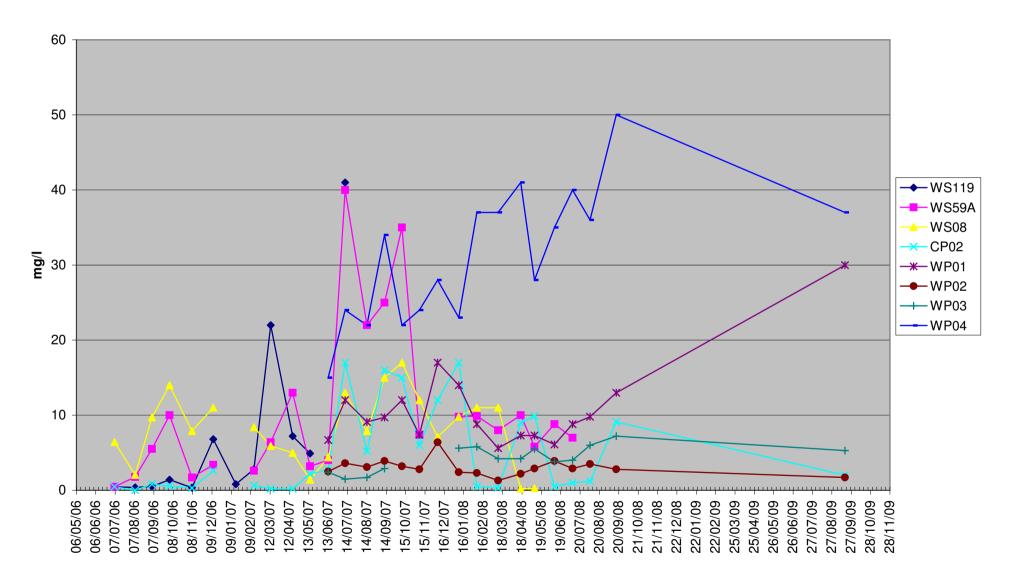
Post Construction Groundwater Quality Monitoring, Report - November 2009

- 8.3 No record or visible signs of oil contamination were noted during the latest monitoring visit. Boreholes WP01 to WP04 are screened across peat and it is possible that the increased TOC and iron concentrations along with the decreasing pH concentration may be indicative of local increases of peat rich water into these boreholes. With this in mind, it is also possible that the elevated TPH concentrations recorded during the post construction monitoring may be due to the high levels of TOC associated with the peaty water (quantified as TPH during the solvent extraction based TPH analysis). 3/4-methylphenol was only recorded at WP01. The reason for its presence within this borehole is unknown but has not been attributed to any site activities which have taken place within this vicinity.
- In the light of the unexplained trends and changes noted above, it is recommended that the available monitoring data and information is assessed against the predictions made in the original Environmental Impact Assessment (EIA) for the windfarm development. The significance of the observed groundwater quality information should be assessed and consideration given to the need for revising existing impact predictions and associated mitigation / precautionary requirements.
- 8.5 It is understood that a second phase of the Whitelee Windfarm is planned for construction and groundwater monitoring will again be undertaken to establish baseline conditions and monitor any construction impacts. It is recommended that during any such Phase 2 groundwater monitoring, bi-annual monitoring of the boreholes within the Phase 1 area is also undertaken and the data reassessed on a yearly basis. During this monitoring it is recommended that phenols at WP01 are specifically targeted and subjected to further assessment and review.

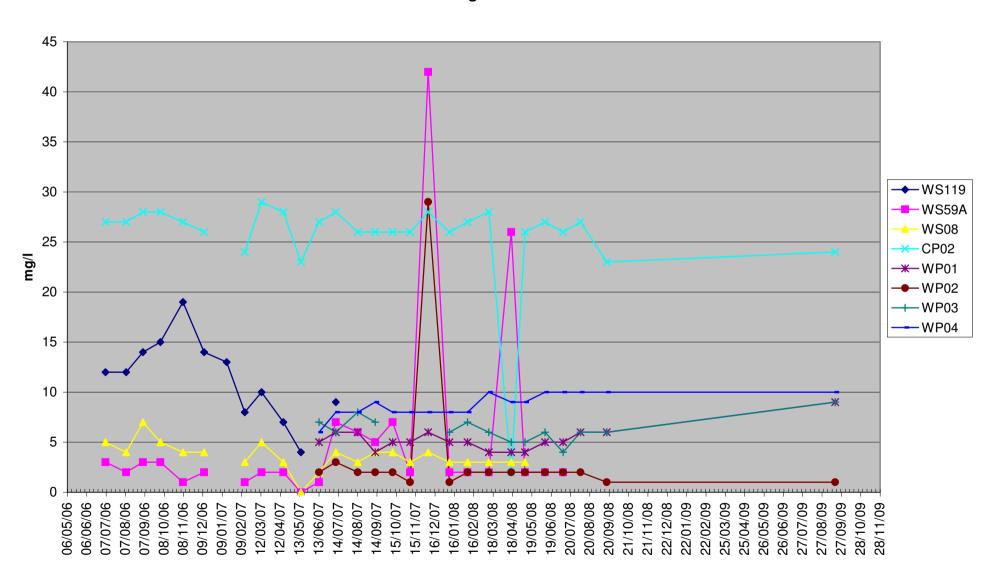
Post Construction Groundwater Quality Monitoring, Report – November 2009


Figure 1
Monitoring Hole Location Plan

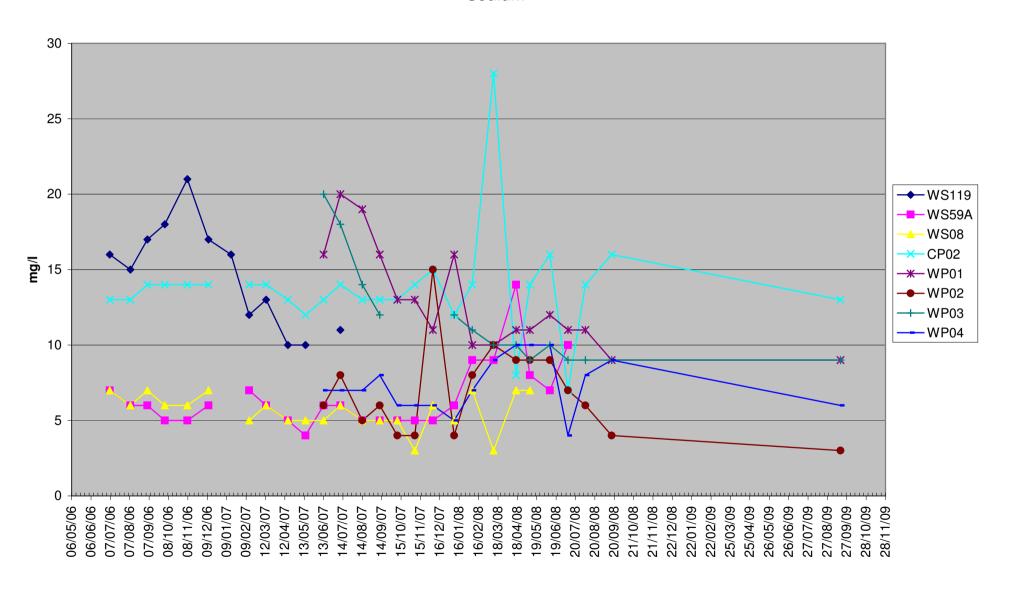

Post Construction Groundwater Quality Monitoring, Report – November 2009

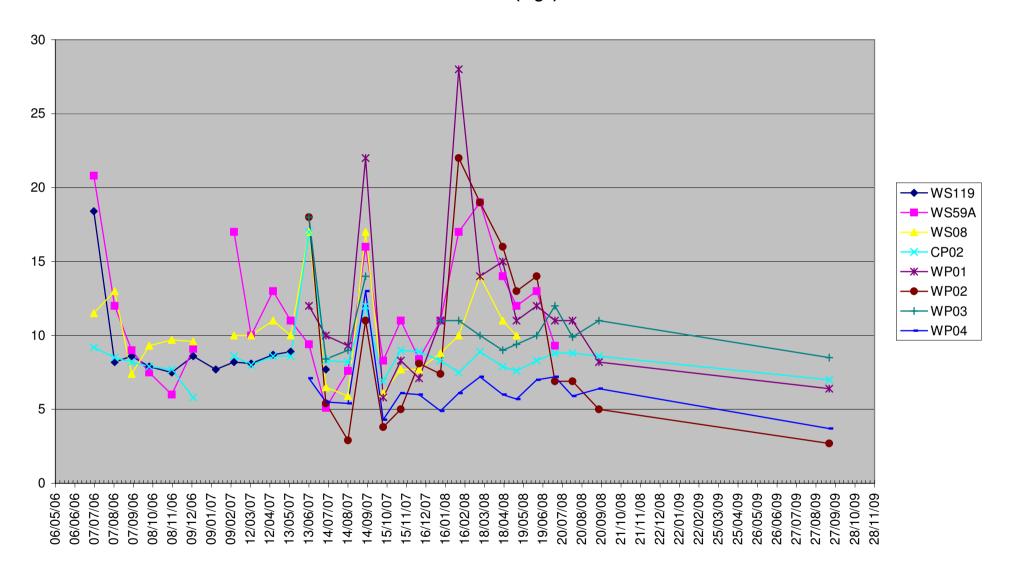

Appendix A – Graphs

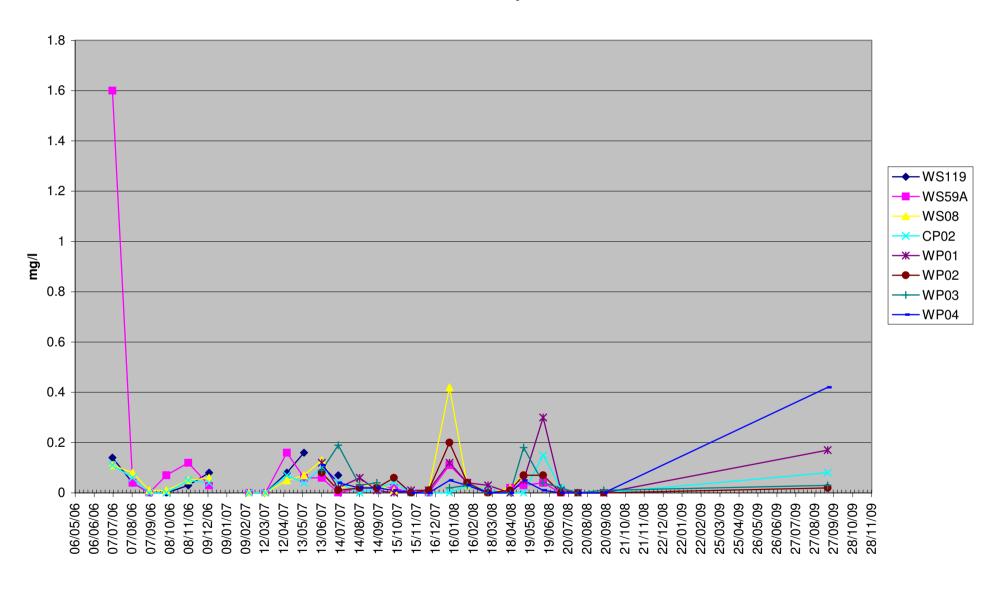
Aluminium

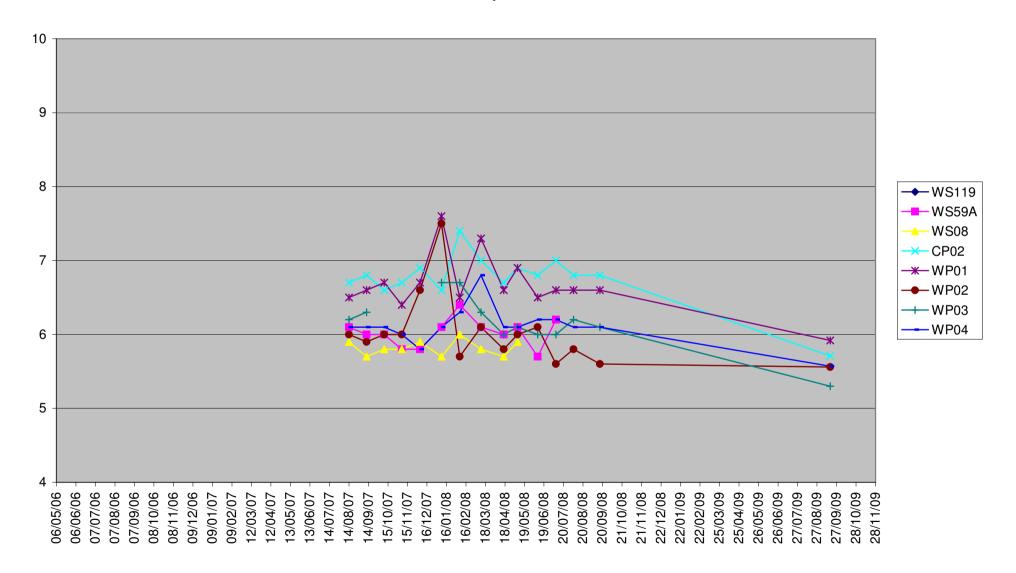


Calcium

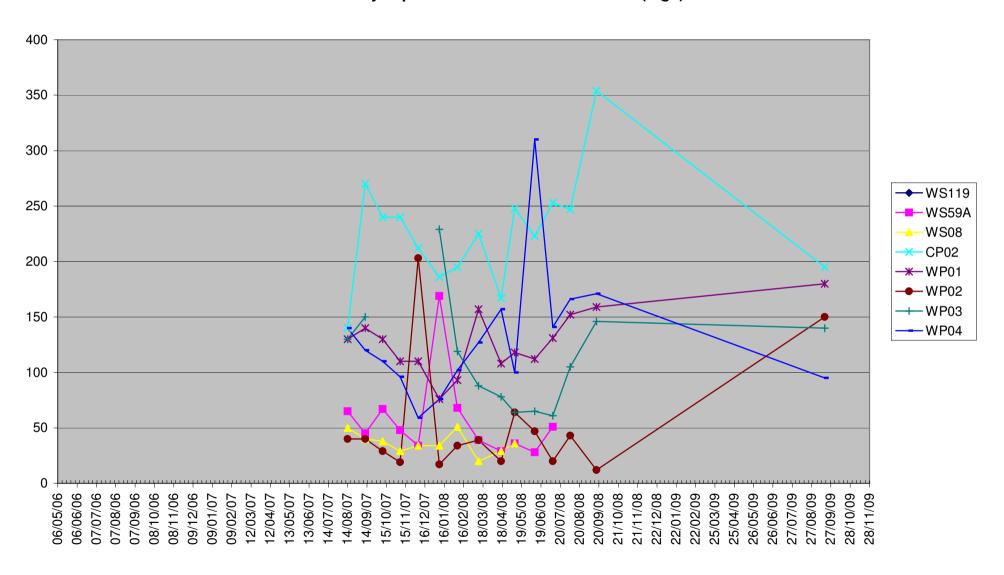



Magnesium

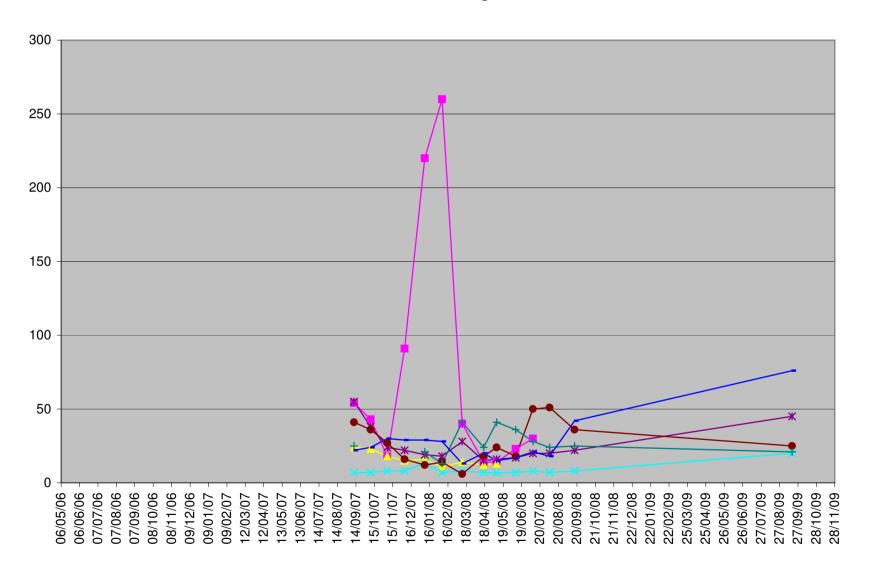

Sodium

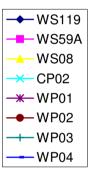


Chloride (mg/l)

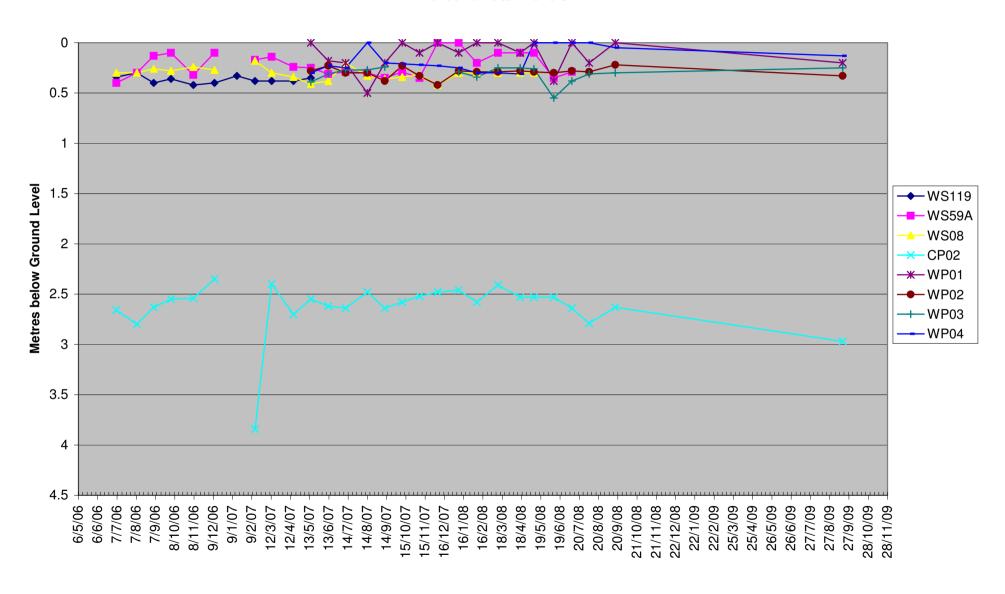


Total Petroleum Hydrocarbons

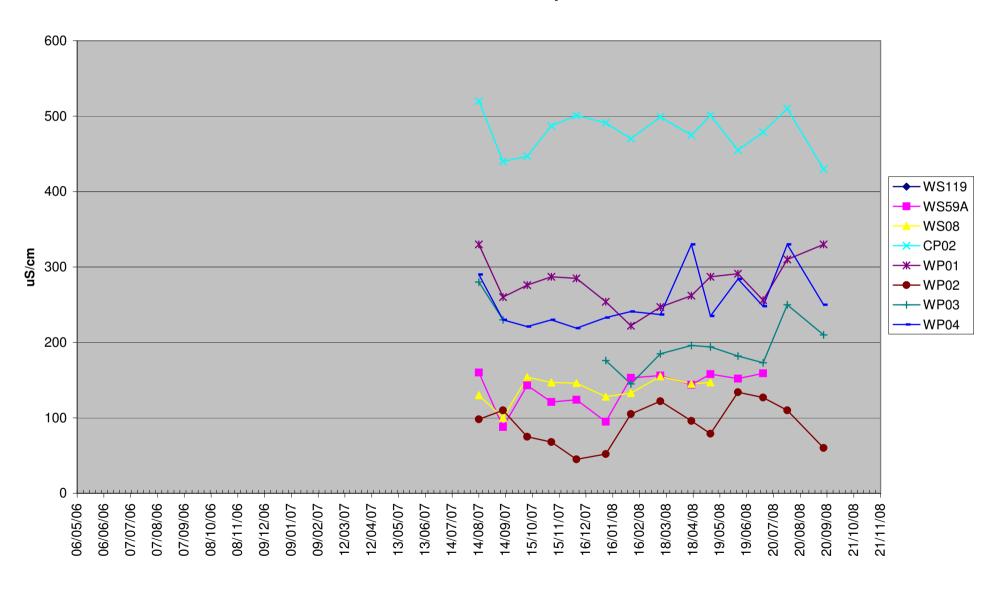


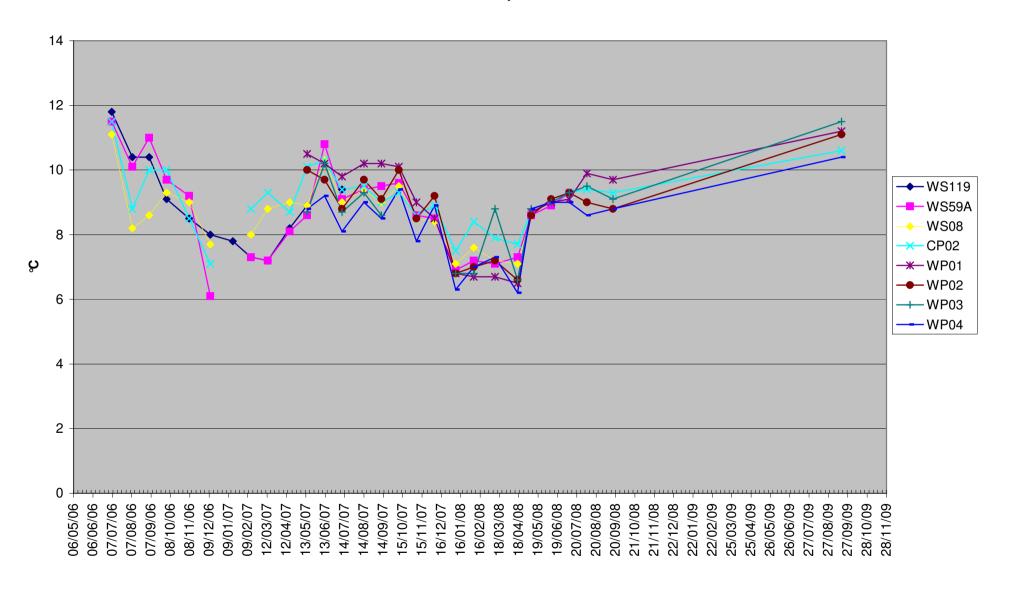


Alkalinity expressed as Calcium Carbonate (mg/l)



Total Organic Carbon




Groundwater Levels

In Situ Conductivity

In Situ Temperature

Scottish Power Whitelee Windfarm Post Construction Groundwater Quality Monitoring, Report – November 2009

Appendix B – Laboratory Data Summary Tables

Aluminium	(mg/l)

BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source
06/07/2006	0.36	0.54	0.14	0.1	N/A	N/A	N/A	N/A	0.2 (DWS)
08/08/2006	0.19	1.48	0.99	0.07	N/A	N/A	N/A	N/A	0.2 (DWS)
04/09/2006	0.28	6.11	0.15	0.22	N/A	N/A	N/A	N/A	0.2 (DWS)
02/10/2006	0.26	12	2.1	0.07	N/A	N/A	N/A	N/A	0.2 (DWS)
07/11/2006	<0.02	1.7	0.4	<0.02	N/A	N/A	N/A	N/A	0.2 (DWS)
11/12/2006	0.17	3.7	1.4	0.12	N/A	N/A	N/A	N/A	0.2 (DWS)
16/01/2007	0.07	_		1	N/A	N/A	N/A	N/A	0.2 (DWS)
14/02/2007	0.51	3.5	4.8	0.14	N/A	N/A	N/A	N/A	0.2 (DWS)
13/03/2007	0.95	7.8	0.74	0.08	N/A	N/A	N/A	N/A	0.2 (DWS)
17/04/2007	0.94	20	3.5	0.04	N/A	N/A	N/A	N/A	0.2 (DWS)
15/05/2007	0.42	3.4	0.9	<0.01	N/A	N/A	N/A	N/A	0.2 (DWS)
13/06/2007	I	0.28	1.1	<0.01	2.1	0.47	0.69	0.15	0.2 (DWS)
10/07/2007	1.7	27	4.3	1.6	2.9	1.5	<0.01	1.3	0.2 (DWS)
14/08/2007	R	26	1.3	<0.01	2.4	1.3	1.7	0.34	0.2 (DWS)
11/09/2007	R	19	4.2	0.61	1.9	1.1	1.4	0.85	0.2 (DWS)
09/10/2007	R	24	4.9	0.41	2.9	1.3	I	1.3	0.2 (DWS)
06/11/2007	R	0.25	0.23	0.13	3.8	0.70	- 1	0.28	0.2 (DWS)
05/12/2007	R	270	0.90	<0.01	2.6	<0.01	I	0.14	0.2 (DWS)
08/01/2008	R	0.26	0.16	0.04	0.09	0.23	0.25	0.28	0.2 (DWS)
06/02/2008	R	0.06	0.05	<0.01	<0.01	0.06	0.08	0.14	0.2 (DWS)
11/03/2008	R	0.18	0.30	0.15	0.20	0.32	0.38	0.26	0.2 (DWS)
16/04/2008	R	0.06	0.16	0.21	0.16	0.38	0.37	0.23	0.2 (DWS)
08/05/2008	R	0.22	0.15	0.06	0.09	0.47	0.39	0.15	0.2 (DWS)
09/06/2008	R	0.34	R	0.07	0.10	0.25	0.43	0.23	0.2 (DWS)
08/07/2008	R	0.02	R	<0.01	<0.01	0.92	0.24	0.03	0.2 (DWS)
05/08/2008	R	R	R	<0.01	<0.01	1.2	0.28	0.03	0.2 (DWS)
16/09/2008	R	R	R	<0.01	0.09	1.1	0.54	0.11	0.2 (DWS)
17/09/2009	R	R	R	<0.01	0.03	0.52	0.16	0.07	0.2 (DWS)

Calcium (mg/l)

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value
BIT									and
									Source
Date									
06/07/2006	35	14	8	54	N/A	N/A	N/A	N/A	250 (DWS)
08/08/2006	27	9	6	50	N/A	N/A	N/A	N/A	250 (DWS)
04/09/2006	36	5	10	54	N/A	N/A	N/A	N/A	250 (DWS)
02/10/2006	36	7	8	50	N/A	N/A	N/A	N/A	250 (DWS)
07/11/2006	47	5	7	53	N/A	N/A	N/A	N/A	250 (DWS)
11/12/2006	37	5	7	50	N/A	N/A	N/A	N/A	250 (DWS)
16/01/2007	34	I	I	I	N/A	N/A	N/A	N/A	250 (DWS)
14/02/2007	18	4	4	50	N/A	N/A	N/A	N/A	250 (DWS)
13/03/2007	22	7	7	60	N/A	N/A	N/A	N/A	250 (DWS)
17/04/2007	14	4	3	56	N/A	N/A	N/A	N/A	250 (DWS)
15/05/2007	7	1	1	35	N/A	N/A	N/A	N/A	250 (DWS)
13/06/2007		7	4	49	15	8	22	12	250 (DWS)
10/07/2007	23	18	12	57	2.9	14	23	17	250 (DWS)
14/08/2007	R	15	13	54	28	8	27	19	250 (DWS)
11/09/2007	R	19	4.2	53	30	11	27	20	250 (DWS)
09/10/2007	R	19	11	52	33	7	I	16	250 (DWS)
06/11/2007	R	10	11	53	31	5	I	16	250 (DWS)
05/12/2007	R	39	11	59	35	59	I	17	250 (DWS)
08/01/2008	R	8	9	51	28	5	20	17	250 (DWS)
06/02/2008	R	12	11	56	30	6	22	19	250 (DWS)
11/03/2008	R	12	11	57	32	5	20	24	250 (DWS)
16/04/2008	R	53	10	12	32	5	18	23	250 (DWS)
08/05/2008	R	12	9	52	36	7	15	21	250 (DWS)
09/06/2008	R	10	R	53	38	9	20	22	250 (DWS)
08/07/2008	R	17	R	52	39	6	13	22	250 (DWS)
05/08/2008	R	R	R	54	47	7	18	23	250 (DWS)
16/09/2008	R	R	R	54	51	4	16	22	250 (DWS)
17/09/2009	R	R	R	52	53	4	28	19	250 (DWS)
,00,2000				<u> </u>		<u> </u>			200 (23)

Iron ((mg/l)
11011	(1119/1 <i>)</i>

BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source
06/07/2006	0.45	0.47	6.42	0.46	N/A	N/A	N/A	N/A	1 (EQS)
08/08/2006	0.38	1.78	2.04	0.01	N/A	N/A	N/A	N/A	1 (EQS)
04/09/2006	0.52	5.5	9.7	0.8	N/A	N/A	N/A	N/A	1 (EQS)
02/10/2006	1.4	10	14	0.55	N/A	N/A	N/A	N/A	1 (EQS)
07/11/2006	0.34	1.7	7.9	0.3	N/A	N/A	N/A	N/A	1 (EQS)
11/12/2006	6.8	3.4	11	2.6	N/A	N/A	N/A	N/A	1 (EQS)
16/01/2007	0.82	I	I	I	N/A	N/A	N/A	N/A	1 (EQS)
14/02/2007	2.8	2.6	8.4	0.64	N/A	N/A	N/A	N/A	1 (EQS)
13/03/2007	22	6.4	5.9	0.22	N/A	N/A	N/A	N/A	1 (EQS)
17/04/2007	7.2	13	5	0.21	N/A	N/A	N/A	N/A	1 (EQS)
15/05/2007	4.9	3.2	1.4	2.2	N/A	N/A	N/A	N/A	1 (EQS)
13/06/2007	I	4	4.4	2.7	6.7	2.5	2.4	15	1 (EQS)
10/07/2007	41	40	13	17	12	3.6	1.5	24	1 (EQS)
14/08/2007	R	22	7.9	5.2	9.1	3.1	1.7	22	1 (EQS)
11/09/2007	R	25	15	16	9.7	3.9	2.9	34	1 (EQS)
09/10/2007	R	35	17	15	12	3.2	1	22	1 (EQS)
06/11/2007	R	7.4	12	6.0	7.4	2.8	I	24	1 (EQS)
05/12/2007	R	220	7.1	12	17	6.4	I	28	1 (EQS)
08/01/2008	R	9.8	9.8	17	14	2.4	5.6	23	1 (EQS)
06/02/2008	R	9.9	11	0.48	8.8	2.3	5.8	37	1 (EQS)
11/03/2008	R	8.0	11	0.36	5.6	1.3	4.2	37	1 (EQS)
16/04/2008	R	10	0.21	9.0	7.3	2.2	4.2	41	1 (EQS)
08/05/2008	R	5.8	0.28	9.9	7.3	2.9	5.5	28	1 (EQS)
09/06/2008	R	8.8	R	0.52	6.1	3.9	3.8	35	1 (EQS)
08/07/2008	R	7.0	R	1.0	8.8	2.9	4.0	40	1 (EQS)
05/08/2008	R	R	R	1.2	9.8	3.5	6.0	36	1 (EQS)
16/09/2008	R	R	R	9.1	13	2.8	7.2	50	1 (EQS)
17/09/2009	R	R	R	2	30	1.7	5.3	37	1 (EQS)

Magnesium (mg/l)

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC
									Value
Date									and
									Source
06/07/2006	12	3	5	27	N/A	N/A	N/A	N/A	50 (DWS)
08/08/2006	12	2	4	27	N/A	N/A	N/A	N/A	50 (DWS)
04/09/2006	14	3	7	28	N/A	N/A	N/A	N/A	50 (DWS)
02/10/2006	15	3	5	28	N/A	N/A	N/A	N/A	50 (DWS)
07/11/2006	19	1	4	27	N/A	N/A	N/A	N/A	50 (DWS)
11/12/2006	14	2	4	26	N/A	N/A	N/A	N/A	50 (DWS)
16/01/2007	13	I	I	I	N/A	N/A	N/A	N/A	50 (DWS)
14/02/2007	8	1	3	24	N/A	N/A	N/A	N/A	50 (DWS)
13/03/2007	10	2	5	29	N/A	N/A	N/A	N/A	50 (DWS)
17/04/2007	7	2	3	28	N/A	N/A	N/A	N/A	50 (DWS)
15/05/2007	4	<1	<1	23	N/A	N/A	N/A	N/A	50 (DWS)
13/06/2007	ı	1	2	27	5	2	7	6	50 (DWS)
10/07/2007	9	7	4	28	6	3	6	8	50 (DWS)
14/08/2007	R	6	3	26	6	2	8	8	50 (DWS)
11/09/2007	R	5	4	26	4	2	7	9	50 (DWS)
09/10/2007	R	7	4	26	5	2	I	8	50 (DWS)
06/11/2007	R	2	3	26	5	1	ı	8	50 (DWS)
05/12/2007	R	42	4	28	6	29	ı	8	50 (DWS)
08/01/2008	R	2	3	26	5	1	6	8	50 (DWS)
06/02/2008	R	2	3	27	5	2	7	8	50 (DWS)
11/03/2008	R	2	3	28	4	2	6	10	50 (DWS)
16/04/2008	R	26	3	2	4	2	5	9	50 (DWS)
08/05/2008	R	2	3	26	4	2	5	9	50 (DWS)
09/06/2008	R	2	R	27	5	2	6	10	50 (DWS)
08/07/2008	R	2	R	26	5	2	4	10	50 (DWS)
05/08/2008	R	R	R	27	6	2	6	10	50 (DWS)
16/09/2008	R	R	R	23	6	1	6	10	50 (DWS)
17/09/2009	R	R	R	24	9	1	9	10	50 (DWS)
						1			

Sodium (mg/l)

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source	
Date										
06/07/2006	15	7	7	13	N/A	N/A	N/A	N/A	200 (DWS)	
08/08/2006	15	6	6	13	N/A	N/A	N/A	N/A	200 (DWS)	
04/09/2006	17	6	7	14	N/A	N/A	N/A	N/A	200 (DWS)	
02/10/2006	18	5	6	14	N/A	N/A	N/A	N/A	200 (DWS)	
07/11/2006	21	5	6	14	N/A	N/A	N/A	N/A	200 (DWS)	
11/12/2006	17	6	7	14	N/A	N/A	N/A	N/A	200 (DWS)	
16/01/2007	16		I	I	N/A	N/A	N/A	N/A	200 (DWS)	
14/02/2007	12	7	5	14	N/A	N/A	N/A	N/A	200 (DWS)	
13/03/2007	13	6	6	14	N/A	N/A	N/A	N/A	200 (DWS)	
17/04/2007	10	5	5	13	N/A	N/A	N/A	N/A	200 (DWS)	
15/05/2007	10	4	5	12	N/A	N/A	N/A	N/A	200 (DWS)	
13/06/2007		6	5	13	16	6	20	7	200 (DWS)	
10/07/2007	11	6	6	14	20	8	18	7	200 (DWS)	
14/08/2007	R	5	5	13	19	5	14	7	200 (DWS)	
11/09/2007	R	5	5	13	16	6	12	8	200 (DWS)	
09/10/2007	R	5	5	13	13	4	ı	6	200 (DWS)	
06/11/2007	R	5	3	14	13	4	I	6	200 (DWS)	
05/12/2007	R	5	6	15	11	15	I	6	200 (DWS)	
08/01/2008	R	6	5	12	16	4	12	5	200 (DWS)	
06/02/2008	R	9	7	14	10	8	11	7	200 (DWS)	
11/03/2008	R	9	3	28	10	10	10	9	200 (DWS)	
16/04/2008	R	14	7	8	11	9	10	10	200 (DWS)	
08/05/2008	R	8	7	14	11	9	9	10	200 (DWS)	
09/06/2008	R	7	R	16	12	9	10	10	200 (DWS)	
08/07/2008	R	10	R	7	11	7	9	4	200 (DWS)	
05/08/2008	R	R	R	14	11	6	9	8	200 (DWS)	
16/09/2008	R	R	R	16	9	4	9	9	200 (DWS)	
17/09/2009	R	R	R	13	9	3	9	6	200 (DWS)	

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and
Date									Source
06/07/2006	18.4	20.8	11.5	9.2	N/A	N/A	N/A	N/A	250 (DWS)
08/08/2006	8.2	12	13	8.5	N/A	N/A	N/A	N/A	250 (DWS)
04/09/2006	8.6	9	7.4	8.2	N/A	N/A	N/A	N/A	250 (DWS)
02/10/2006	7.9	7.5	9.3	7.9	N/A	N/A	N/A	N/A	250 (DWS)
07/11/2006	7.58	6	9.7	7.7	N/A	N/A	N/A	N/A	250 (DWS)
11/12/2006	8.6	9.1	9.6	5.8	N/A	N/A	N/A	N/A	250 (DWS)
16/01/2007	7.7		I	1	N/A	N/A	N/A	N/A	250 (DWS)
14/02/2007	8.2	17	10	8.6	N/A	N/A	N/A	N/A	250 (DWS)
13/03/2007	8.1	10	10	8	N/A	N/A	N/A	N/A	250 (DWS)
17/04/2007	8.7	13	11	8.6	N/A	N/A	N/A	N/A	250 (DWS)
15/05/2007	8.9	11	10	8.6	N/A	N/A	N/A	N/A	250 (DWS)
13/06/2007		9.4	17	17	12	18	18	7.1	250 (DWS)
10/07/2007	7.7	5.1	6.5	8.3	10	5.4	8.4	5.5	250 (DWS)
14/08/2007	R	7.6	5.9	8.2	9.3	2.9	9.0	5.4	250 (DWS)
11/09/2007	R	16	17	12	22	11	14	13	250 (DWS)
09/10/2007	R	8.3	6.1	6.9	5.8	3.8	I	4.3	250 (DWS)
06/11/2007	R	11	7.7	9	8.3	5	I	6.1	250 (DWS)
05/12/2007	R	8.4	7.7	8.9	7.1	8.1	I	6	250 (DWS)
08/01/2008	R	11	8.8	8.3	11	7.4	11	4.9	250 (DWS)
06/02/2008	R	17	10	7.5	28	22	11	6.1	250 (DWS)
11/03/2008	R	19	14	8.9	14	19	10	7.2	250 (DWS)
16/04/2008	R	14	11	7.9	15	16	9.0	6.0	250 (DWS)
08/05/2008	R	12	10	7.6	11	13	9.4	5.7	250 (DWS)
09/06/2008	R	13	R	8.3	12	14	10	7.0	250 (DWS)
08/07/2008	R	9.3	R	8.8	11	6.9	12	7.2	250 (DWS)
05/08/2008	R	R	R	8.8	11	6.9	9.9	5.9	250 (DWS)
16/09/2008	R	R	R	8.6	8.2	5.0	11	6.4	250 (DWS)
17/09/2009	R	R	R	7	6.4	2.7	8.5	3.7	250 (DWS)

Total Petroleum Hydrocarbons (mg/l)

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC
									Value
Date									and
									Source
06/07/2006	0.14	1.6	0.11	0.011	N/A	N/A	N/A	N/A	N/A
08/08/2006	0.04	0.04	0.08	0.06	N/A	N/A	N/A	N/A	N/A
04/09/2006	<0.01	<0.01	0.01	<0.01	N/A	N/A	N/A	N/A	N/A
02/10/2006	<0.01	0.07	0.01	<0.01	N/A	N/A	N/A	N/A	N/A
07/11/2006	0.03	0.12	0.05	0.05	N/A	N/A	N/A	N/A	N/A
11/12/2006	0.08	0.03	0.06	0.04	N/A	N/A	N/A	N/A	N/A
16/01/2007	<0.01	1	1	ı	N/A	N/A	N/A	N/A	N/A
14/02/2007	<0.01	<0.01	<0.01	<0.01	N/A	N/A	N/A	N/A	N/A
13/03/2007	<0.01	<0.01	<0.01	<0.01	N/A	N/A	N/A	N/A	N/A
17/04/2007	0.08	0.16	0.05	0.07	N/A	N/A	N/A	N/A	N/A
15/05/2007	0.16	0.06	0.07	0.04	N/A	N/A	N/A	N/A	N/A
13/06/2007	ı	0.06	0.13	0.1	0.12	0.08	0.09	0.11	N/V
10/07/2007	0.07	<0.01	0.02	0.04	0.02	0.01	0.19	0.04	N/V
14/08/2007	R	0.02	0.03	<0.01	0.06	0.02	0.03	0.02	N/V
11/09/2007	R	0.02	0.03	0.02	0.01	0.02	0.04	0.02	N/V
09/10/2007	R	0.02	0.01	0.04	<0.01	0.06	I	0.01	N/V
06/11/2007	R	<0.01	<0.01	<0.01	0.01	<0.01	1	<0.01	N/V
05/12/2007	R	<0.01	0.01	<0.01	0.01	0.01	I	<0.01	N/V
08/01/2008	R	0.11	0.42	<0.01	0.12	0.20	0.02	0.05	N/V
06/02/2008	R	0.04	0.03	0.03	0.04	0.04	0.03	0.03	N/V
11/03/2008	R	<0.01	<0.01	0.01	0.03	<0.01	<0.01	<0.01	N/V
16/04/2008	R	0.02	0.02	<0.01	<0.01	0.01	<0.01	<0.01	N/V
08/05/2008	R	0.03	0.07	<0.01	005	0.07	0.18	0.05	N/V
09/06/2008	R	0.04	R	0.15	0.30	0.07	0.04	0.01	N/V
08/07/2008	R	<0.01	R	0.02	0.01	<0.01	0.02	<0.01	N/V
05/08/2008	R	R	R	<0.01	<0.01	<0.01	<0.01	<0.01	N/V
16/09/2008	R	R	R	<0.01	<0.01	<0.01	0.01	<0.01	N/V
17/09/2009	R	R	R	0.08	0.17	0.02	0.03	0.42	N/V
					l	I		l .	

рΗ

	ριι								
BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source
14/08/2007	R	6.1	5.9	6.7	6.5	6.0	6.2	6.1	95% between the range of pH6-pH9 (DWS)
11/09/2007	R	6.0	5.7	6.8	6.6	5.9	6.3	6.1	95% between the range of pH6- pH9 (DWS)
09/10/2007	R	6.0	8.5	6.6	6.7	6.0		6.1	95% between the range of pH6-pH9 (DWS)
06/11/2007	R	5.8	5.8	6.7	6.4	6.0	_	6.0	95% between the range of pH6- pH9 (DWS)
05/12/2007	R	5.8	5.9	6.9	6.7	6.6	_	5.8	95% between the range of pH6-pH9 (DWS)
08/01/2008	R	6.1	5.7	6.6	7.6	7.5	6.7	6.1	95% between the range of pH6- pH9 (DWS)
06/02/2008	R	6.4	6.0	7.4	6.5	5.7	6.7	6.3	95% between the range of pH6-pH9 (DWS)
11/03/2008	R	6.1	5.8	7.0	7.3	6.1	6.3	6.8	95% between the range of pH6- pH9 (DWS)
16/04/2008	R	6.0	5.7	6.7	6.6	5.8	6.0	6.1	95% between the range of pH6-pH9 (DWS)
08/05/2008	R	6.1	5.9	6.9	6.9	6.0	6.1	6.1	95% between the range of pH6- pH9 (DWS)
09/06/2008	R	5.7	R	6.8	6.5	6.1	6.0	6.2	95% between the range of pH6-pH9 (DWS)
08/07/2008	R	6.2	R	7.0	6.6	5.6	6.0	6.2	95% between the range of pH6- pH9 (DWS)
05/08/2008	R	R	R	6.8	6.6	5.8	6.2	6.1	95% between the range of pH6-pH9 (DWS)
16/09/2008	R	R	R	6.8	6.6	5.6	6.1	6.1	95% between the range of pH6- pH9 (DWS)
17/09/2009	R	R	R	5.71	5.92	5.56	5.3	5.57	95% between the range of pH6- pH9 (DWS)

Total Organic Carbon (mg/l)

							3 /			
BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source	
11/09/2007	R	54	24	7	55	41	25	22	No abnormal change (DWS)	
09/10/2007	R	43	23	7	38	36	-	24	No abnormal change (DWS)	
06/11/2007	R	18	18	8	24	27	_	30	No abnormal change (DWS)	
05/12/2007	R	91	15	8	22	16		29	No abnormal change (DWS)	
08/01/2008	R	220	16	13	19	12	21	29	No abnormal change (DWS)	
06/02/2008	R	260	11	7	18	14	13	28	No abnormal change (DWS)	
11/03/2008	R	40	14	8	28	6	41	13	No abnormal change (DWS)	
16/04/2008	R	14	12	7	15	18	24	20	No abnormal change (DWS)	
08/05/2008	R	14	13	7	16	24	41	15	No abnormal change (DWS)	
09/06/2008	R	23	R	7	17	18	36	17	No abnormal change (DWS)	
08/07/2008	R	30	R	8	20	50	28	21	No abnormal change (DWS)	
05/08/2008	R	R	R	7	20	51	24	18	No abnormal change (DWS)	
16/09/2008	R	R	R	8	22	36	25	42	No abnormal change (DWS)	
17/09/2009	R	R	R	20	45	25	21	76	No abnormal change (DWS)	

Electrical Conductivity (μS/cm)

						- u u u u u	(μΟ/ Ο	,	
ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source
Date									
14/08/2007	R	160	130	520	330	98	280	290	2500µS/cm Water Supply (Scotland) Regs
11/09/2007	R	88	100	440	260	110	230	230	2500µS/cm Water Supply (Scotland) Regs
09/10/2007	R	160	120	1300	340	82	I	250	2500µS/cm Water Supply (Scotland) Regs
06/11/2007	R	110	120	430	230	86		210	2500µS/cm Water Supply (Scotland) Regs
05/12/2007	R	110	110	480	260	450	I	180	2500µS/cm Water Supply (Scotland) Regs
08/01/2008	R	67	94	320	180	170	150	200	2500µS/cm Water Supply (Scotland) Regs
06/02/2008	R	110	200	200	130	75	210	110	2500µS/cm Water Supply (Scotland) Regs
11/03/2008	R	110	1300	470	250	99	200	310	2500µS/cm Water Supply (Scotland) Regs
16/04/2008	R	110	140	440	220	100	170	300	2500µS/cm Water Supply (Scotland) Regs
08/05/2008	R	120	150	410	230	100	160	230	2500µS/cm Water Supply (Scotland) Regs
09/06/2008	R	110	R	420	310	140	170	310	2500µS/cm Water Supply (Scotland) Regs
08/07/2008	R	180	R	510	370	98	210	370	2500µS/cm Water Supply (Scotland) Regs
05/08/2008	R	R	R	510	310	110	250	330	2500µS/cm Water Supply (Scotland) Regs
16/09/2008	R	R	R	430	330	60	210	250	2500µS/cm Water Supply (Scotland) Regs
17/09/2009	R	R	R	410	480	73	250	240	2500µS/cm Water Supply (Scotland) Regs

Alkalinity expressed as Calcium Carbonate (mgHCO₃/I)

				<u> </u>	3	• ,			
ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value
Date									Source
14/08/2007	R	65	50	140	130	40	130	140	30 Water Supply (Scotland) Regs
11/09/2007	R	45	40	270	140	40	150	120	30 Water Supply (Scotland) Regs
09/10/2007	R	67	38	240	130	29	1	110	30 Water Supply (Scotland) Regs
06/11/2007	R	48	29	240	110	19		96	30 Water Supply (Scotland) Regs
05/12/2007	R	34	34	212	110	203	-	59	30 Water Supply (Scotland) Regs
08/01/2008	R	169	34	186	76	17	229	76	30 Water Supply (Scotland) Regs
06/02/2008	R	68	51	195	93	34	119	102	30 Water Supply (Scotland) Regs
11/03/2008	R	39	20	225	157	39	88	127	30 Water Supply (Scotland) Regs
16/04/2008	R	29	29	167	108	20	78	157	30 Water Supply (Scotland) Regs
08/05/2008	R	36	36	248	118	64	64	100	30 Water Supply (Scotland) Regs
09/06/2008	R	28	R	223	112	47	65	310	Water Supply (Scotland) Regs
08/07/2008	R	51	R	253	131	20	61		Water Supply (Scotland) Regs
05/08/2008	R	R	R	247	152	43	105	166	Water Supply (Scotland) Regs
16/09/2008	R	R	R	354	159	12	146	171	Water Supply (Scotland) Regs
17/09/2009	R	R	R	195	180	150	140	95	30 Water Supply (Scotland) Regs

Sulphate (Total)(mg/l)

вн	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and
Date									Source
14/08/2007	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
11/09/2007	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
09/10/2007	R	<10	<10	<10	<10	<10		<10	250 (DWS)
06/11/2007	R	<10	<10	<10	<10	<10		<10	250 (DWS)
05/12/2007	R	<10	<10	<10	<10	<10		<10	250 (DWS)
08/01/2008	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
06/02/2008	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
11/03/2008	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
16/04/2008	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
08/05/2008	R	<10	<10	<10	<10	<10	<10	<10	250 (DWS)
09/06/2008	R	<10	R	<10	<10	<10	<10	<10	250 (DWS)
08/07/2008	R	<10	R	<10	<10	<10	<10	<10	250 (DWS)
05/08/2008	R	R	R	<10	<10	<10	<10	<10	250 (DWS)
16/09/2008	R	R	R	<10	<10	<10	<10	<10	250 (DWS)
17/09/2009	R	R	R	<10	<10	<10	<10	<10	250 (DWS)

SV	0	C	μg	/I)
<u> </u>	•	\sim	M9	••

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value
									and
Date									Source
	21/2	11/2	21/2			21/2	21/4	21/4	
06/07/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
08/08/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
04/09/2006	57 Bis (2- ethylhexyl)- phthalate	65 Bis (2- ethylhexyl)- phthalate	67 Bis (2- ethylhexyl)- phthalate	61 Bis (2- ethylhexyl)- phthalate	N/A	N/A	N/A	N/A	N/V
			,	, · · · · · · · · · · ·					
02/10/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
07/11/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
11/12/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
16/01/2007	N/D	<u> </u>		l l	N/A	N/A	N/A	N/A	N/V
14/02/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
13/03/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
17/04/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
15/05/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
13/06/2007	I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
10/07/2007	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
14/08/2007	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
11/09/2007	R	N/D	N/D	12 (Di-n- butylphthalate) 45 Phenol	N/D	N/D	N/D	N/D	N/V
09/10/2007	R	Bis (2- ethylhexyl)- phthalate	31 Bis (2- ethylhexyl)- phthalate	15 Bis (2- ethylhexyl)- phthalate	180 3/4-Methylphenol 35 Bis (2-ethylhexyl)- Phthalate 93 Phenol	55 Bis (2- ethylhexyl)- phthalate	ı	14 Bis (2- ethylhexyl)- phthalate	N/V
06/11/2007	R	N/D	N/D	N/D	N/D	N/D	I	N/D	N/V
05/12/2007	R	470 Bis (2- ethylhexyl)- Phthalate	590 Bis (2- ethylhexyl)- Phthalate	1000 Bis (2- ethylhexyl)- Phthalate	120 Bis (2-ethylhexyl)- Phthalate	440 Bis (2- ethylhexyl)- Phthalate	ı	320 Bis (2- ethylhexyl)- Phthalate	N/V
08/01/2008	R	67 Bis (2- ethylhexyl)- Phthalate	83 Bis (2- ethylhexyl)- Phthalate	89 Bis (2- ethylhexyl)- Phthalate	2400 Bis (2-ethylhexyl)- Phthalate	200 Bis (2- ethylhexyl)- Phthalate	2300 Bis (2- ethylhexyl)- Phthalate	3200 Bis (2- ethylhexyl)- Phthalate	N/V
06/02/2008	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
11/03/2008	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
16/04/2008	R	94 Bis (2- ethylhexyl)- Phthalate	68 Bis (2- ethylhexyl)- Phthalate	57 Bis (2- ethylhexyl)- Phthalate	120 Bis (2-ethylhexyl)- Phthalate	80 Bis (2- ethylhexyl)- Phthalate	58 Bis (2- ethylhexyl)- Phthalate	70 Bis (2- ethylhexyl)- Phthalate	N/V

SV	/ 0	C	(μg/l)	١
U		\mathbf{v}	(Mg/T)	,

					(p.g/				
BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source
08/05/2008	R	81 Bis (2- ethylhexyl)- Phthalate	87 Bis (2- ethylhexyl)- Phthalate	65 Bis (2- ethylhexyl)- Phthalate	11 2-methyl phenol 28 3/4-methyl phenol 12 2,4-Dichloro-3-methyl phenol 14 4-chloro-3- methyl phenol 12 2,4,6-Trichlorophenol 100 Bis (2-ethylhexyl)-Phthalate	79 Bis (2- ethylhexyl)- Phthalate	100 Bis (2- ethylhexyl)- Phthalate	100 Bis (2- ethylhexyl)- Phthalate	N/V
09/06/2008	R	N/D	R	N/D	13 2-methyl phenol 23 3/4-methyl phenol 11 2,4-Dichloro-3-methyl phenol 12 4-chloro-3- methyl phenol 10 2,4,5-Trichlorophenol 11 Bis (2-ethylhexyl)- Phthalate 13 Isophorone 13 Dimethyl phthalate 10 Diethyl phthalate 11 Benzo(b/k0Fluoranthene	N/D	N/D	N/D	N/V
08/07/2008	R	N/D	R	N/D	29 3/4-Methylphenol	N/D	N/D	N/D	N/V
05/08/2008	R	R	R	N/D	19 3/4-Methylphenol	N/D	N/D	N/D	N/V
16/09/2008	R	R	R	N/D	100 3/4-Methylphenol	N/D	N/D	N/D	N/V
17/09/2009	R	R	R	N/D	140 3/4-Methylphenol	N/D	N/D	N/D	N/V

VOCs (μg/l)

BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04	GAC Value and Source
06/07/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
08/08/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
04/09/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
02/10/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
07/11/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
11/12/2006	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
16/01/2007	N/D	I	I	1	N/A	N/A	N/A	N/A	N/V
14/02/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
13/03/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
17/04/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
15/05/2007	N/D	N/D	N/D	N/D	N/A	N/A	N/A	N/A	N/V
13/06/2007	I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
10/07/2007	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
14/08/2007	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
11/09/2007	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
09/10/2007	R	N/D	N/D	N/D	N/D	N/D	I	N/D	N/V
06/11/2007	R	N/D	N/D	N/D	N/D	N/D	I	N/D	N/V
05/12/2007	R	N/D	N/D	N/D	N/D	N/D		N/D	N/V
08/01/2008	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
06/02/2008	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
11/03/2008	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
16/04/2008	R	N/D	N/D	N/D	N/D	1 (Chloroform)	N/D	1 (Chloroform)	N/V
08/05/2008	R	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/V
09/06/2008	R	N/D	R	N/D	N/D	N/D	N/D	N/D	N/V
08/07/2008	R	N/D	R	N/D	N/D	N/D	N/D	N/D	N/V
05/08/2008	R	R	R	N/D	N/D	N/D	N/D	N/D	N/V
16/09/2008	R	R	R	N/D	19 (Toluene)	N/D	N/D	N/D	N/V
17/09/2009	R	R	R	N/D	(Toluene)	N/D	N/D	N/D	N/V

Notes:

N/A = Not available,

 $\mathbf{N}/\mathbf{D} = \text{Not Detected}$

I = Inaccessible,

R = Removed

N/V = No Value.

Scottish Power Whitelee Windfarm Post Construction Groundwater Quality Monitoring, Report – November 2009

Appendix C -In situ water quality results and weather conditions

In Situ Conductivity (mS/cm)

BH Date	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04
06/07/2006	372	188	162	536	N/A	N/A	N/A	N/A
08/08/2006	345	149	168	527	N/A	N/A	N/A	N/A
04/09/2006	405	140	163	518	N/A	N/A	N/A	N/A
02/10/2006	399	120	153	524	N/A	N/A	N/A	N/A
07/11/2006	412	130	169	527	N/A	N/A	N/A	N/A
11/12/2006	419	109	181	529	N/A	N/A	N/A	N/A
16/01/2007	300	I		I	N/A	N/A	N/A	N/A
14/02/2007	360	156	184	529	N/A	N/A	N/A	N/A
13/03/2007	312	118	166	549	N/A	N/A	N/A	N/A
17/04/2007	292	124	137	498	N/A	N/A	N/A	N/A
15/05/2007	292	120	124	477	N/A	N/A	N/A	N/A
13/06/2007		148	149	501	246	177	278	214
10/07/2007	329	158	146	515	306	128	280	245
14/08/2007	R	165	151	502	284	84	237	282
11/09/2007	R	160	160	502	303	122	246	293
9/10/2007	R	143	154	447	276	75	I	221
06/11/2007	R	121	147	487	287	68	1	230
05/12/2007	R	124	146	501	285	45	1	219
08/01/2008	R	95	128	491	254	52	176	233
06/02/2008	R	153	133	470	222	105	145	241
11/03/2008	R	156	155	499	247	122	185	237
16/04/2008	R	144	145	475	262	96	196	330
08/05/2008	R	158	147	501	287	79	194	235
09/06/2008	R	152	R	455	291	134	182	284
08/07/2008	R	159	R	479	256	127	173	248
05/08/2008	R	R	R	486	268	153	187	316
16/09/2008	R	R	R	482	273	126	191	312
17/09/2009	R	R	R	meter failure	meter failure	meter failure	meter failure	meter failure

In	Situ	pН
----	------	----

ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04
Date								
06/07/2006	5.3	6.07	5.1	4.1	N/A	N/A	N/A	N/A
08/08/2006	5.2	4.08	5.92	7.13	N/A	N/A	N/A	N/A
04/09/2006	6.15	5.45	5.61	5.51	N/A	N/A	N/A	N/A
02/10/2006	6.61	6.19	3.86	4.04	N/A	N/A	N/A	N/A
07/11/2006	6.6	6.1	5.5	6.7	N/A	N/A	N/A	N/A
11/12/2006	4.72	5.85	5.41	6.13	N/A	N/A	N/A	N/A
16/01/2007	5.42				N/A	N/A	N/A	N/A
14/02/2007	6.11	4.31	3.55	5.37	N/A	N/A	N/A	N/A
13/03/2007	3.18	5.57	3.03	3.19	N/A	N/A	N/A	N/A
17/04/2007	5.85	5.47	5.55	6.47	N/A	N/A	N/A	N/A
15/05/2007	5.96	5.85	5.53	6.38	N/A	N/A	N/A	N/A
13/06/2007	I	4.18	3.22	3.49	3.69	4.65	4.07	6.9
10/07/2007	3.06	3.7	3.22	3.16	3.4	3.52	3.66	3.08
14/08/2007	R	3.46	3.21	3.1	3.57	4.4	4.12	4.29
11/09/2007	R	3.45	3.05	2.8	3.15	3.54	3.56	3.85
9/10/2007	R	3.39	2.52	2.61	2.99	3.95		4.45
06/11/2007	R	5.5	1.31	4.42	3.77	5.6	1	0.27
05/12/2007	R	pH meter failure	pH meter failure	pH meter failure	pH meter failure	pH meter failure	I	pH meter failure
08/01/2008	R	2.32	7.22	6.8	2.52	2.19	2.76	3.85
06/02/2008	R	6.02	5.37	3.31	6.19	5.2	5.83	6.9
11/03/2008	R	3.25	2.20	3.14	3.26	3.58	4.05	4.42
16/04/2008	R	2.74	3.10	4.68	3.17	4.12	3.39	4.12
08/05/2008	R	3.15	3.24	5.70	5.84	5.40	5.27	4.79
09/06/2008	R	4.24	R	5.47	5.42	4.87	5.05	4.26
08/07/2008	R	4.92	R	5.38	5.60	4.95	5.10	4.07
05/08/2008	R	R	R	5.41	5.39	4.45	5.34	4.10
16/09/2008	R	R	R	5.50	5.48	4.63	5.38	4.12
17/09/2009	R	R	R	5.71	5.92	5.56	5.3	5.57

			In S	itu Tem	peratu	re ℃		
ВН	WS119	WS59A	WS08	CP02	WP01	WP02	WP03	WP04
Date								
06/07/2006	11.8	11.5	11.1	11.5	N/A	N/A	N/A	N/A
08/08/2006	10.4	10.1	8.2	8.8	N/A	N/A	N/A	N/A
04/09/2006	10.4	11	8.6	10	N/A	N/A	N/A	N/A
02/10/2006	9.1	9.7	9.3	10	N/A	N/A	N/A	N/A
07/11/2006	8.5	9.2	9	8.5	N/A	N/A	N/A	N/A
11/12/2006	8	6.1	7.7	7.1	N/A	N/A	N/A	N/A
16/01/2007	7.8				N/A	N/A	N/A	N/A
14/02/2007	7.3	7.3	7.8	8.7	N/A	N/A	N/A	N/A
13/03/2007	7.2	7.1	8.6	9	N/A	N/A	N/A	N/A
17/04/2007	7.8	7.7	8.5	9	N/A	N/A	N/A	N/A
15/05/2007	8.6	8.3	8.6	10	N/A	N/A	N/A	N/A
13/06/2007	1	10.1	10.1	10	10.1	9.1	9.9	9
10/07/2007	9.4	9.1	9	9.4	9.8	8.8	8.7	8.1
14/08/2007	R	9.4	9.4	9.5	10.2	9.7	9.3	9
11/09/2007	R	9.5	9.0	9.0	10.2	9.1	8.6	8.5
9/10/2007	R	9.6	9.5	9.3	10.1	10		9.4
06/11/2007	R	8.6	8.5	8.6	9	8.5	1	7.8
05/12/2007	R	8.5	8.4	8.9	8.5	9.2	I	8.9
08/01/2008	R	6.9	7.1	7.5	6.8	6.8	6.8	6.3
06/02/2008	R	7.2	7.6	8.4	6.7	7	6.8	7
11/03/2008	R	7.1	7.2	7.9	6.7	7.2	8.8	7.3
16/04/2008	R	7.3	7.1	7.7	6.5	6.6	6.6	6.2
08/05/2008	R	8.6	8.6	8.7	8.7	8.6	8.8	8.8
09/06/2008	R	8.9	R	9.0	9.0	9.1	9.0	9.0
08/07/2008	R	9.3	R	9.3	9.1	9.3	9.3	9.0
05/08/2008	R	R	R	9.4	9.9	9.0	9.5	8.6
16/09/2008	R	R	R	9.3	9.7	8.8	9.1	8.8
17/09/2009	R	R	R	10.6	11.1	11.1	11.5	10.4

Notes:

 $\mathbf{N}/\mathbf{A} = \text{Not available},$

N/D = Not Detected

I = Inaccessible,

 $\mathbf{R} = \mathsf{Removed}$

Month	Weather Conditions
July 2006	Dry and warm
August 2006	Dry and warm
September 2006	Dry and mild
October 2006	Dry and mild
November 2006	Dry and cold
December 2006	Dry and cold
January 2007	Dry and cold
February 2007	Dry and cold
March 2007	Dry and mild
April 2007	Dry and mild
May 2007	Dry and mild
June 2007	Sunshine and mild
July 2007	Dry and sunny
August 2007	Overcast with showers
September 2007	Overcast
October 2007	Dry and sunny
November 2007	Mist and fog
December 2007	Mist and fog
January 2008	Overcast with showers
February 2008	Dry and sunny
March 2008	Overcast with showers
April 2008	Dry and sunny
May 2008	Dry and sunny
June 2008	Dry and sunny
July 2008	Dry and sunny
August 2008	Dry and overcast
September 2008	Overcast with showers
September 2009	Dry and sunny

Scottish Power Whitelee Windfarm

Post Construction Groundwater Quality Monitoring, Report - November 2009

Appendix D - Borehole Logs

Status Final 03/02/2003

BOREHOLE LOG

Borehole No CP02

Information

Whitelee Windfarm, Eaglesham

Client:

CRE Energy Ltd.

Consultant:

Arup Scotland

Date Started

Date Complete: Hole Type: Equipment:

CP

22/10/2002 23/10/2002

2.0T Pilcon

Initial Boring Diameter:

Initial Core Diameter Rotary Casing Type

Core Barrel: Core Bit:

150mm

Coordinates:

E 252700.00 N 648700.00

Ground Level:

271.00 m OD

Plunge:

90°

Job No: 8497

			PROGR				DRILLING DETAILS									
Pate	Time	Hole	Casing	Water	Remarks			CP Chiselling		Rotary						
	- 7	Depth	Depth	Depth		From	То	Hours	From	To	Hole Dia	Core Dia	Flush			
22/10/2002	17:00	1.50	1.50	-	Dry	4.70	4.80	1.00		T = milita			y-			
23/10/2002	07:30	1.50	1.50	- 1	Dry					1000	*					
10/2002	17:00	4.80	4.70	•	Dry											
•																
3																
31																
9		· ===														
9	n dinise		- Territoria													

)				TER ST				IN SITU SPT TEST DETAILS						
Date	Time	Strike	Risen To	After n Minutes	Casing Depth	Flow	Sealed	Depth	Blows for 75mm Increments					
10/2002		3.20	capse of	tengtulas Tile (rpok)	3.15	Seepage		2.70 3.20 4.10 4.70	1,0,0,1,0,0 1,1,4,4,3,4 1,4,3,4,3,5 50,50 for no penetration					
		af 4.80 p.												
•														
)														

NOTES

All depth in metres; all diameters in millimetres.

Groundwater levels are subject to seasonal, tidal and other fluctuations and should not be taken as constant 1.0 hour hand excavating inspection pit, plan area 1.00m x 0.50m to 1.00m deep. 50mm dia. standpipe installed to 4.50m complete with upright locking security cover set in concrete at ground level.

PERSONNEL

JMCH

Logged by:

WRS

Checked by:

SMCQ

Status Final 03/02/2003

150mm

Borehole No CP02

Sheet 1 of 1

Whitelee Windfarm, Eaglesham

Client:

CRE Energy Ltd.

Job No: 8497

Consultant:

Arup Scotland

Date Started Date Complete: 22/10/2002

Hole Type:

Equipment:

CP

23/10/2002

2.0T Pilcon

Initial Boring Diameter:

Initial Core Diameter

Rotary Casing Type

Core Barrel:

Core Bit:

Coordinates:

252700.00

648700.00 N

Ground Level:

271.00 m OD

Plunge: Scale:

90° 1:50

Description of Strata	Legend	Depth	OD	Sampling/ Core Run		U		tu Testing	TCR (SCR)	FI	li
				C	ore Run		Test	Result	RQD		-
Very soft plastic brown pseudo-fibrous PEAT (Alluvium).	ملام ملام مالا م مالام مالام مالام مالام مالام مالام مالام مالام مالام الم			В	0.50			nite	d		
	مالام مالام مالام الام مالام مالام الام مالام مالام الام مالام مالام الم الم الم المالام الم الم المالام الم الم المالام الم الم المالام الم الم المالام الم الم المال المالام الم الم المالام الم الم المالام الم الم المالام الم الم المالام الم الم المالام الم الم الم الم المالام الم ا			U	1.00-1.45	2					
	م علاء علاء علاء م علاء علاء علاء علاء ملاء علاء ملاء علاء علاء علاء ملاء على علاء ملاء على			B UNR	1.70-2.20 1.70-2.15	1					
	د ملاد ملاد ملاد ملاد ملاد د ملاد ملاد ملاد ملاد ملاد ملاد			U	2.30-2.65	3					
	مالاد مالاد مالاد د مالاد مالاد مالاد مالاد مالاد د مالاد مالاد			-	2.70-3.15		S	. 1			
ledium dense grey clayey fine to coarse SAND and fine to coarse ngular to sub angular GRAVEL.	علاء علاء علاء علاء علاء علاء علاء علاء علاء	3.20	267.80	D	3.20-3.65		S	15			
				B D	3.90 4.10-4.55		s	15			
ery dense dark grey fine to coarse sub angular GRAVEL and ccasional cobbles (possible weathered rock). nd of Borehole at 4.80 m		4.70 4.80	266.30 266.20	- D	4.70 4.70		S	100/75#			
		7508									

U	Undisturbed U100 Sample
P	Piston Sample
TW	Thin Wall Sample
D	Small Disturbed Sample
В	Bulk Disturbed Sample
LB	Large Bulk Disturbed Sample
W	Water Sample
G	Gas Sample
C	Core
NR	No Recovery

Core Run
Total Core Recovery
Solid Core Recovery
Rock Quality Designation
Fracture Index
Fracture Log
Non Intact
Blows to drive U100 /U86

4

TCR SCR RQD FI FI NI U*

Standard Penetration Test
Cone Penetration Test
N for full 300mm penetration
For given penetration (mm)
Seating blows only (mm)
No Penetration
Pressuremeter Test
Permeability Test (m/s)
Insitu Vane Test
Packer Test (Lugeons)

20	Rotary O	pen Hole
RC	Rotary C	ored
nsta	allation	
則	Slotted Pipe	Sand Filter
	Piezometer Tip	Bentonite Se
<u>X</u>	Grout	Gravel Filter

Cable Percussion

CP

國

Concrete

PART B: SITE WORK

Land-Drill Geotechnics Limited

PART B TABLE OF CONTENTS

Notes on Fieldworks Procedures

Key to Borehole and Trial Pit Records

<u>Description</u>	<u>Figure No</u>
Schedule of Site Works	В0
Borehole Records	B1 to B4

Boring

The standard method of boring in soil for ground investigation is known as the cable percussion method. It uses various tools worked on a wire cable, typically a shell in non-cohesive soils, and a clay cutter in cohesive soils. Very dense soils, boulders or other hard obstructions are disturbed or broken up by chiselling and the fragments removed with the shell. To prevent the borehole falling in, the borehole is normally lined with driven steel casings of such sizes that the bottom of the borehole is not less than 125mm diameter.

Where there are constraints upon access, alternative methods of soft ground boring are available. However, each has limitations that need to be taken into account when assessing their suitability and the ground conditions inferred from their results.

Rotary Drilling

Rotary drilling is employed to extend ground investigation beyond the practical limit of cable tool boring in hard formations, commonly rock. Core drilling is used to obtain continuous intact samples of the formation and is generally undertaken with double tube swivel type core barrels fitted with tungsten or diamond bits as appropriate to formation type and hardness. Open-hole rotary drilling using, tricone rock roller bits or tungsten insert drag bits, or down-the-hole hammers, is carried out where core is not required, strata identification being made from cuttings only. Open-hole rotary drilling methods may also be employed for fast penetration of soils where sampling is not required, prior to coring at depth. Air or water is the flushing medium normally used with rotary drilling methods. The borehole is normally lined with inserted or drilled-in casing through the soils, and into the bedrock, where ground conditions require.

Samples and In-situ Tests

Tube samples of cohesive soils are generally taken with a 100mm internal diameter open drive sampler known as a U100, with an area ratio of 30%. The sampler is driven into the soil at the bottom of the borehole by a sliding hammer. After a sample is taken, the drive head and cutting shoe are unscrewed from the sample tube and any wet or disturbed soil removed from either end. The sample tube is then sealed with wax and fitted with plastic end caps.

A range of more specialised equipment, e.g. piston samplers, may be used to obtain higher quality samples in conditions where conventional open drive sampling is unsatisfactory.

Disturbed samples are taken from the boring tools at regular intervals. The samples are sealed in airtight containers. Bulk samples are larger disturbed samples from the boring tools, or from trial pits.

The Standard Penetration Test (SPT) carried out in accordance with BS1377:1990:Part 9:Clause 3.3, determines the resistance of soil to the penetration of a split barrel sampler. A 50mm diameter split barrel sampler is driven 450mm into the soil using a 63.5kg hammer with a 760mm drop, and the penetration resistance recorded. This "N" value is expressed as the number of blows required to achieve 300mm penetration (the "test drive") below an initial penetration of 150mm (the "seating drive") through any disturbed soil at the bottom of the borehole.

In coarse soils, the Cone Penetration Test (CPT) is conducted in the same manner as the SPT but using a 50mm diameter 60 degree apex solid cone point to replace the split barrel sampler.

Groundwater

Borehole water levels are recorded, together with the depths at which seepages or inflows of groundwater are detected and the observations noted on the borehole records. These observations may not give an accurate indication of groundwater conditions, for the following reasons:

- (a) The borehole is rarely left standing at the relevant depth for sufficient time for the water level to reach equilibrium.
- (b) A permeable stratum may have been sealed off by the borehole casing.
- (c) It may have been necessary to add water to the borehole to facilitate progress.
- (d) There may be seasonal, tidal or other effects at the site.

A more accurate assessment of groundwater behaviour may be obtained from standpipes or standpipe piezometers.

Gases

Determination and measurement of gases in the ground, commonly in relation to landfills, may be made directly from the ground surface, where a hole is formed by driving a solid and rigid steel spike to depths normally in the range 1.0 to 1.5m. Gas emissions are analysed using an appropriate portable analyser. However, research has shown that the small sample hole size and smearing effects can give a false negative result. Accordingly, the method is now generally used in isolation. A more accurate assessment of ground-gas emissions may be obtained from standpipes installed in boreholes.

PI Statement

Certified that the above mentioned samples/parts/materials have been tested/examined in accordance with the terms of the contract/order applicable and unless otherwise stated conform fully to the standards/specifications quoted. This does not however, guarantee the balance of production from which the tested samples/parts/materials have been taken to be of equal quality.

Land-Drill Geotechnics Ltd Pardovan Works Philpstoun Linlithgow EH49 6QZ

info@land-drill.com 01506-830044 NOTES ON FIELD PROCEDURES

E L

Contract No:

2557 Part B

WHITELEE WIND WARM

SOIL SAMPLES

U (X) General purpose tube sample; X No of blows to drive sampler

UP

NOTE: Tube samples are 100mm diameter unless otherwise specified in the remarks.

Suffix 'a' indicates sample not recovered. Suffix 'b' indicates partial recovery.

J/T Jar/Tub sample B/LB Bag/Large Bag sample

Volatile Vial

CORE RECOVERY AND ROCK QUALITY

TCR Total Core Recovery: The total core recovered expressed as a percentage of the core run length

SCR Solid Core Recovery: The core recovered as solid cylinders expressed as a percentage of the core run length

RQD Rock Quality Designation: The core recovered as solid cylinders of length 100mm or more expressed as a percentage of core run length.

ROTARY DRILLING SIZES

Designation

Ν Н

S

412

RO-S/RO-R Rotary Open Hole Drilling through Soil / Rotary Open Hole Drilling through Rock lf Fracture Index: The number of discontinuities expressed as fractures per metre

Flush: "Depth" indicates depth down to which recorded "Returns" relate

GROUND-WATER

W Ground-water sample Ground-water encountered Ā Depth to which ground-water rose Ground-water cut off by the casing

IN SITU AND FIELD TESTS

SPT=X a/b (pen) Standard penetration test (split barrel sampler(SPT)or cone (CPT)); X is the penetration (N) value;

OF CPT=X <u>a/b (pen)</u> 'a' is blow/75mm for seating drive; 'b' is blows/75mm for test drive; (pen) is test drive penetration if less than 300mm.

CBR California bearing ratio test MCV Moisture condition value test

Permeability test ΗP Hand penetrometer test Field vane test

HV Hand vane test ID Density test

LEGENDS

Material legends are in accordance with BS 5930:1999

before a description indicates that it is based on the Driller's record.

INSTALLATIONS (BACKFILL)

	1
2 -4	
-4	

Concrete

Bentonite

Bentonite/cement grout

DIMENSIONS

All dimensions in metres unless otherwise stated.

Nominal Diameter (mm)

Core

54

76

92

113

75

Borehole

76

100

121

146

108

2557

Part B

KEY TO BOREHOLE AND TRIAL PIT RECORDS

Land-Drill Linlithgow EH49 6QZ

nfo@land-drill.com 01506-830044

WHITELEE WIND WARM

Contract No:

Geotechnics Ltd Pardovan Works Philpstoun

Exploration	Co-ord	dinates	Ground	Method	Figure No	Installation	Remarks
Point	Easting	Northing	Level				
	(m)	(m)	(mO.D.)				
WP01	254575.0	646552.0	-	СР	B1	S'pipe(50mm)	
WP02	256166.0	645580.0	_	CP	B2	S'pipe(50mm)	
WP03	259088.0	646961.0	_	CP	В3	S'pipe(50mm)	
WP04	261552.0	645881.0	_	CP	B4	S'pipe(50mm)	

CP Cable Percussion

Contract No: 2557

Chk & App LKR Final WHITELEE WIND WARM

Style: LDG_SCHEDULE_OF_SITEWORKS File: P:\GINTUPROJECTS\2557.GFJ Printed: 23/05/2007 08:57:19 Land-Drill Geotechnics Ltd, Pardovan Works, Linithtgow EH49 6QZ E-mail: info@land-drill.com Tel: 01506-830044

0.000	Sep in	Sample	Samples ar		Casing		Level (mOD)	Depth				De	scription	of Strata				Legend	Water Depth	Symbol	ackfill
4/ 20	<u>-</u> 5	Depth	Aybe Re	esult	Depth				# F	PEAT								<u> </u>	Вери	<u> </u>	Depth
20	07								1								Г	<u> </u>			0.30
									-									<u> </u>			
									_									<u> </u>			
									-									1, 11,			
									1									<u> </u>			
]									<u> </u>			
								2.20	1									<u> </u>			
									#(Grey SILT								× × ×			
									+									`			
								3.10	1								:	× ^ ?			
								0.10	- #(Grey brow	n sandy gr	ravelly CLA	Y with cob	bles and I	boulders			•			
4									1								Ī	<u> </u>			
-8300									-									<u> </u>			
01506									1									•			
<u>Tel</u>									-								ļ	<u></u>			
ill.com									_									- <u>`</u> -			
and-dı									1									•			5.00
info@l									_								-				<u> </u>
-mail:									-									- <u>-</u> -			<u> </u>
В Z; 4/	5							6.00	1								ļ	<u>:</u>			6.00
H49 6									-			EN	D OF BOF	REHOLE							
gow E									1												
Linlith									-												
Vorks,									1												
ovan V]												
Pardo									1												
cs Ltd,]												
techni									1												
ill Geo]												
and-Dr									+												
30 Le]												
08:57:									-												
/2007									1												
Style: LDG_BOREHOLE File: P:\GINT\PROJECTS\2557.GPJ Printed: 23/05/2007 08:57:30 Land-Drill Geotechnics Ltd, Pardovan Works, Linlithgow EH49 6\QZ E-mail: info@land-drill.com Tel: 01506-830044	ot.		Flush		Chiselling	Time/b		iter Add		Struck	Ground	d-water Time(mins	Cut Off	Diam		Depth	Location	:	E 2545	75 O	
Printed	eiu	1110 I	Type To Depth	From	To	Time(hr	r) From 3.10		.00	SHUCK	17096 10	memmin	Cut OII	150	Boring 6.00	Casing 3.50	1		N 6465		
<u>В</u>																	Level:		-		
557.G																	Orientati	on:	Vertical		
CTS/2	em	narks:	<u> </u>	1			1	E0	uipme	ent: Vayfarer		l	Method	: Percussio	on to	3.00m	Borehole	No:			
ROJE									10011 V	v ayıartı			Javie F	C1 CU351U					1415		
JINT/P																			WPO)1	
e: P:\G																					
ĬĔ IJ	_																Contract	No:	2557	7	
EHOL		Oriller MK	Originator					ВС	RE	HOLE	E REC	CORD)						Part B		
BOR										Scale	1:50						7		Fig. No).	
FIDG	Chk	k & App GGH	Status Final								.//	A/A 🗀					100 P	7	B1		
Style	•							W	HITE	LLE V	VIND \	NARM					7	J	Sheet	1 of	1
ᆫ				1																	

ſ	<u> </u>	Sample	Samples ar		Casing		Level (mOD)	Depth				De	scription	of Strata				Legend	Water		ackfill
L	2 1/5	Depth	Lype Re	esult	Depth			-	# PE	=ΔΤ								77 77 G	Depth	Symbol	Depth
2	007							-	- "''									1/ 1/		1 1	0.30
								-										<u> </u>		8 8	
								-										1, 11,			
								_	-									7 7 7			1.00
								-										<u> </u>			
								-										1, 11,			
								-										71/7			,
								_										1/ <u>\\ \</u>			:
								-										7 77 7 77			
								-										<u> </u>			
								-										1, 11,			
								-										<u> </u>			
044								-										<u> </u>			
6-830								-	-									1, 11,			
0120								-										71/7			
m Te								4.60	-									<u> </u>			
Jrill.co								-	# Gr	rey SILT								×××			
land-c								-										××			
info@								-										× × >			
-mail:								-										× × ×			
OZ E								-										× × ×	•		
149 6								_										× × ×			
gow E								6.50	# 6	rev brown	n eandy a	ravelly CLA	V with col	obles and l	houldere			×××			
Linlith								-	7 %	icy blowi	i sariay g	lavelly OLF	VI WILLI COL	obics and i	boulders						
/orks,	4/5							7.20	-									•			7.20
van M								_				EN	D OF BOF	REHOLE							
Pardo								-													
s Ltd,								_													
echnic								-													
Geot								-													
id-Dri								-													
8 Lar								_													
8:57:3								-													
2007 C								-													
Style: LDG_BOREHOLE File: P:/GINT/PROJECTS/2557.GPJ Printed: 23/05/2007 08:57:38 Land-Drill Geotechnics Ltd, Pardovan Works, Linithgow EH49 6QZ E-mail: info@land-drill.com Tel: 01506-830044			lush		Chiselling			ter Adde			Groun	d-water		Diarr		Depth	1, 4 11 -		F 05010		
inted:	Retu		Type To Depth	From		Time(hr		Ц Т		Struck	Rose To	Time(mins)	Cut Off	Diam 150	Boring 7.20	Casing 6.50	Location		E 25616 N 64558		
Ā																	Level:		_		
57.GP,																	Orientat	ion:	Vertical		
TS\25(Rem	narks:						Fn	uipmer	nt:			Method	<u> </u>			Borehole		. 5		
ONEC.	.011							Pile	con Wa	ayfarer			Cable F	Percussio	on to 7	7.20m					
IT/PR(WP0	2	
P:\GIN																					
File:																	Contrac	t No:	2557	,	-
JO-		Oriller	Originator						יסבי	JOI 1	- DF/)				Contrac	LINU.			
ORE		MK						DО	ו⊐רו	Scale		CORD	,						Part B Fig. No		
9G B	Chl	(& Ann	Status																B2		
tyle: LI	(« & App GGH	Final					WH	HITEI	LEE V	۷IND ۱	WARM					16	7		e	
Ω																			Sheet 1	OT 1	

0	-	Sample	Samples an		Casing		Level (mOD)	Depth				De	scription (of Strata				Legend	Water		ackfill
8	<u>.</u> 15	Deptn	E Re	Suit	Deptn				# PE	EAT									Бериі	٨	Depth
8820	75 75 707	Depth	Re	sult	Depth		(IIIOD)	- - - - - - - - - - - - - - - - - - -	#PE	EAT	n SILT		Scription	or Orlate					Depth	logm/S	0.30
ıgow EH49 6QZ E-mail: info@land-drill.com Tel: 01506-8300 ∞ ∞	//5							4.50 - - - - - - - - - - - - - - - - - - -	# GI	rey browr	n sandy gi	ravelly CLA	Y with cob		boulders			× × × × · · · · · · · · · · · · · · · ·			5.00
Style: LDG_BOREHOLE File: P:\GINT\PROJECTS\2557.GPJ Printed: 23/05/2007 08:57:41 Land-Drill Geotechnics Ltd, Pardovan Works, Linlithgow EH49 6QZ E-mail: info@land-drill.com Tel: 01506-830044																					
1ted: 2	Retu		Flush Type To Depth	From	hiselling To	Time(hr			0 00	Struck	Rose To	d-water Time(mins	Cut Off	Diam 150	Boring 6.00	Casing 5.00	Location:		E 25908 N 64696		
\2557.GPJ Prin							4.50	0.1						130	3.00	3.00	Level: Orientation		- Vertical	J 1.U	
File: P:\GINT\PROJEC1S	tem	narks:						Eq Pilo	uipmer con Wa	nt: ayfarer			Method Cable F	: Percussio	on to 6	5.00m	Borehole		WP0		
BOREHOLE		Oriller MK	Originator					ВО	REI	HOLE Scale		CORD)				Contract		Part B		
Style: LDG	Chk	« & App GGH	Status Final					WH	HITE	LEE V	VIND \	NARM					16	J	B3 Sheet	1 of	1

	Progress	Sample_ Depth	Samples an	d Tests sult	Casing Depth		Level (mOD)	Depth			De	scription	of Strata				Legend	Water Depth	Symbol	ackfill Depth
	5/5 007	Берш	> Re	Suit	Deptil				# PEAT								<u> </u>	Dopar	<u>ڇُر</u> ا	Deptin
2								- - - - - -										Ā		0.30
-830044								3.40	#Soft grey t	orown SIL1	T						\(\frac{1}{2} \) \(\frac{1}{			
: E-mail: info@land-drill.com Tel: 0150								4.70	#Grey brow	n sandy g	ravelly CLA	AY with col	obles and I	boulders			× × × × × × × × × × × × × × × × × × ×	1		5.00
Style: LDG_BOREHOLE File: P:\GINT\PROJECTS\2557.GPJ Printed: 23/05/2007 08:57:49 Land-Drill Geotechnics Ltd, Pardovan Works, Linithgow EH49 6QZ E-mail: info@land-drill.com Tel: 01506-830044	8/5	F	Flush	Ci	hiselling		I. Wa	6.00	1	Groun	d-water	D OF BOF	REHOLE		Depth -					¢ 6.00
(2557.GPJ Printed: 2	Retu		Type To Depth	From		Time(hr		n To	Struck		ime(mins) 20	Cut Off 4.70	Diam 150	Boring 6.00	Casing 5.00	Location Level: Orientati		E 2615 N 6458 - Vertical	81.0	
File: P:\GINT\PROJECTS	Ren	narks:						Equ Pilo	uipment: on Wayfarer			Method Cable F	Percussio	on to 6	5.00m	Borehole		WP0		
Style: LDG_BOREHOLE		Oriller MK k & App GGH	Originator Status Final						REHOLI Scale	1:50						I _I O	Z Z	Part B Fig. No B4 Sheet).	1

Scottish Power Whitelee Windfarm Post Construction Groundwater Quality Monitoring, Report – November 2009

Appendix E Laboratory Results (September 2009)

Scientific Analysis Laboratories Certificate of Analysis

11 Law Place Nerston Mains East Kilbride G74 4QL

Tel: 01355 230001 Fax: 01355 230002

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 177418-1

Date of Report: 02-Oct-2009

Customer: Jacobs

95 Bothwell Street

Glasgow G2 7HX

Customer Contact: Mr Stewart Easton

Customer Job Reference: BO627819

Customer Site Reference: Whitelee Windfarm Date Job Received at SAL: 17-Sep-2009 Date Analysis Started: 22-Sep-2009 Date Analysis Completed: 02-Oct-2009

The results reported relate to samples received in the laboratory Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by: Miss Jeanette Abbott **Project Manager**

Issued by:

Index to symbols used in 177418-1

Value	Description
F	Filtered
AR	As Received
13	Results have been blank corrected.
U	Analysis is UKAS accredited
N	Analysis is not accredited

Method Index

Value	Description
T22	Titration
T147	Filter(0.45um)ICP/OES(Sim)
T373	ICP/OES (Filtered)
T16	GC/MS
T54	GC/MS (Headspace)
T121	Filter (0.45um) ICP/OES
T7	Probe
T285	ICP/OES (SIM) (Filtered)
T253	IC(EID299)
T21	OX/IR
T81	GC/FID (LV)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Aluminium	T121	AR	0.01	mg/l	N	001-005
Calcium	T121	AR	1	mg/l	N	001-005
Iron	T121	AR	0.01	mg/l	N	001-005
Mg (Dissolved)	T373	AR	1	mg/l	N	001-005
Sodium	T147	AR	1	mg/l	N	001-005
Dissolved SO4(Total)	T285	AR	10	mg/l	N	001-005
Alkalinity expressed as CaCO3	T22	AR	10	mg/l	N	001-005
Chloride	T253	F	0.2	mg/l	U	001-005
Electrical Conductivity	T7	AR	10	μS/cm	N	001-005
pH	T7	AR			U	001-005
Total Organic Carbon	T21	AR	1	mg/l	N	001-005
Total Petroleum Hydrocarbons	T81	AR	0.01	mg/l	U	001-005
Phenol	T16	AR	10	μg/l	U	001-006
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	U	001-006
2-Chlorophenol	T16	AR	10	μg/l	U	001-006
1,3-Dichlorobenzene	T16	AR	10	μg/l	U	001-006
1,4-Dichlorobenzene	T16	AR	10	μg/l	U	001-006
1,2-Dichlorobenzene	T16	AR	10	μg/l	U	001-006
Bis (2-chloroisopropyl) ether	T16	AR	10	μg/l	U	001-006
2-methyl phenol	T16	AR	10	μg/l	U	001-006
3/4-Methylphenol	T16	AR	10	μg/l	U	001-006
Hexachloroethane	T16	AR	10	μg/l	U	001-006
Nitrobenzene	T16	AR	10	μg/l	U	001-006
Isophorone	T16	AR	10	μg/l	U	001-006
2-Nitrophenol	T16	AR	10	μg/l	U	001-006
2,4-Dimethylphenol	T16	AR	10	μg/l	U	001-006
Bis (2-chloroethoxy) methane	T16	AR	10	μg/l	U	001-006
2,4-Dichlorophenol	T16	AR	10	μg/l	U	001-006
1,2,4-Trichlorobenzene	T16	AR	10	μg/l	U	001-006
Naphthalene	T16	AR	10	μg/l	U	001-006
4-Chloroaniline	T16	AR	10	μg/l	U	001-006
Hexachlorobutadiene	T16	AR	10	μg/l	U	001-006
4-Chloro-3-methylphenol	T16	AR	10	μg/l	U	001-006
2-Methylnaphthalene	T16	AR	10	μg/l	U	001-006
Hexachlorocyclopentadiene	T16	AR	10	μg/l	U	001-006
2,4,6-Trichlorophenol	T16	AR	10	μg/l	U	001-006
2,4,5-Trichlorophenol	T16	AR	10	μg/l	U	001-006
2-Chloronaphthalene	T16	AR	10	μg/l	U	001-006
2-Nitroaniline	T16	AR	10	μg/l	U	001-006
Dimethyl phthalate	T16	AR	10	μg/l	U	001-006
2,6-Dinitrotoluene	T16	AR	10	μg/l	U	001-006

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Acenaphthylene	T16	AR	10	μg/l	U	001-006
Acenaphthene	T16	AR	10	μg/l	U	001-006
3-Nitroaniline	T16	AR	10	μg/l	U	001-006
2,4-Dinitrophenol	T16	AR	10	μg/l	U	001-006
Dibenzofuran	T16	AR	10	µg/l	U	001-006
2,4-Dinitrotoluene 4-Nitrophenol	T16	AR AR	10 10	µg/l	U	001-006 001-006
Diethyl phthalate	T16	AR	10	μg/l μg/l	U	001-006
Fluorene	T16	AR	10	μg/l	U	001-006
4-Chlorophenyl phenylether	T16	AR	10	µg/l	U	001-006
4-Nitroaniline	T16	AR	10	μg/l	U	001-006
Azobenzene	T16	AR	10	μg/l	U	001-006
4-Bromophenyl phenylether	T16	AR	10	μg/l	U	001-006
Hexachlorobenzene	T16	AR	10	μg/l	U	001-006
Pentachlorophenol	T16	AR	10	μg/l	U	001-006
Phenanthrene	T16	AR	10	μg/l	U	001-006
Anthracene	T16	AR	10	μg/l	U	001-006
Carbazole	T16	AR	10	µg/l	U	001-006
Di-n-butylphthalate	T16	AR	10	µg/l	U	001-006
Fluoranthene Pyrene	T16	AR AR	10	μg/l μg/l	U	001-006 001-006
Butyl benzylphthalate	T16	AR	10	μg/l	U	001-006
Benzo(a)Anthracene	T16	AR	10	μg/l	U	001-006
Chrysene	T16	AR	10	μg/l	U	001-006
Bis (2-ethylhexyl)phthalate	T16	AR	10	μg/l	U	001-006
Di-n-octylphthalate	T16	AR	10	μg/l	U	001-006
Benzo(b/k)Fluoranthene	T16	AR	10	μg/l	U	001-006
Benzo(a)Pyrene	T16	AR	10	μg/l	U	001-006
Indeno(123-cd)Pyrene	T16	AR	10	μg/l	U	001-006
Dibenzo(ah)Anthracene	T16	AR	10	μg/l	U	001-006
Benzo(ghi)Perylene	T16	AR	10	μg/l	U	001-006
1,1,1,2-Tetrachloroethane	T54	AR	1	μg/l	U	001-005
1,1,1-Trichloroethane	T54 T54	AR AR	1	µg/l	U	001-005
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	T54	AR	1	μg/l μg/l	U	001-005 001-005
1,1,2-Trichloroethylene	T54	AR	1	μg/l	U	001-005
1,1-Dichloroethane	T54	AR	1	μg/l	U	001-005
1,1-Dichloroethylene	T54	AR	1	μg/l	U	001-005
1,1-Dichloropropene	T54	AR	1	μg/l	U	001-005
1,2,3-Trichloropropane	T54	AR	1	μg/l	U	001-005
1,2,4-Trimethylbenzene	T54	AR	1	μg/l	U	001-005
1,2-dibromoethane	T54	AR	1	μg/l	U	001-005
1,2-Dichlorobenzene	T54	AR	1	μg/l	U	001-005
1,2-Dichloroethane	T54	AR	1	μg/l	U	001-005
1,2-Dichloropropane	T54	AR	1	µg/l	U	001-005
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	T54	AR AR	1	μg/l μg/l	U	001-005 001-005
1,3-Dichloropropane	T54	AR	1	μg/l	U	001-005
1,4-Dichlorobenzene	T54	AR	1	μg/l	U	001-005
2,2-Dichloropropane	T54	AR	1	μg/l	U	001-005
2-Chlorotoluene	T54	AR	1	μg/l	U	001-005
4-Chlorotoluene	T54	AR	1	μg/l	U	001-005
Benzene	T54	AR	1	μg/l	U	001-005
Bromobenzene	T54	AR	1	μg/l	U	001-005
Bromochloromethane	T54	AR	1	μg/l	U	001-005
Bromodichloromethane	T54	AR	1	μg/l	U	001-005
Bromoform	T54	AR	1	µg/l	U	001-005
Bromomethane Carbon tetrachloride	T54 T54	AR AR	1	µg/l	U	001-005 001-005
Chlorobenzene	T54	AR	1	μg/l μg/l	U	001-005
Chlorodibromomethane	T54	AR	1	μg/l	U	001-005
Chloroethane	T54	AR	1	μg/l	U	001-005
Chloroform	T54	AR	1	μg/l	U	001-005
Chloromethane	T54	AR	1	μg/l	U	001-005
Cis-1,2-Dichloroethylene	T54	AR	1	μg/l	U	001-005
Cis-1,3-Dichloropropene	T54	AR	1	μg/l	U	001-005
Dibromomethane	T54	AR	1	μg/l	U	001-005
Dichlorodifluoromethane	T54	AR	1	μg/l	U	001-005
Dichloromethane	T54	AR	50	μg/l	N	001-005
EthylBenzene	T54	AR	1	μg/l	U	001-005

Determinand	Method	Test Sample	LOD	Units	Symbol	SAL References
Isopropyl benzene	T54	AR	1	μg/l	U	001-005
M/P Xylene	T54	AR	1	μg/l	U	001-005
n-Propylbenzene	T54	AR	1	μg/l	U	001-005
O Xylene	T54	AR	1	μg/l	U	001-005
p-Isopropyltoluene	T54	AR	1	μg/l	U	001-005
S-Butylbenzene	T54	AR	1	μg/l	U	001-005
Styrene	T54	AR	1	μg/l	U	001-005
T-Butylbenzene	T54	AR	1	μg/l	U	001-005
Tetrachloroethylene	T54	AR	1	μg/l	U	001-005
Toluene	T54	AR	1	μg/l	U	001-005
Trans-1,2-Dichloroethene	T54	AR	1	μg/l	U	001-005
Trans-1,3-Dichloropropene	T54	AR	1	μg/l	U	001-005
Trichlorofluoromethane	T54	AR	1	μg/l	U	001-005
Vinyl chloride	T54	AR	1	μg/l	U	001-005

SAL Reference: 177418

Project Site: Whitelee Windfarm Customer Reference: BO627819

Water Analysed as Water

Miscellaneous

			SAL	Reference	177418 001	177418 002	177418 003	177418 004	177418 005
		Custome	r Sample	Reference	WP01	WP02	WP03	WP04	CP02
Determinand	Method	Test Sample	LOD	Units					
Aluminium	T121	AR	0.01	mg/l	0.03	0.52	0.16	0.07	<0.01
Calcium	T121	AR	1	mg/l	53	4	28	19	52
Iron	T121	AR	0.01	mg/l	30	1.7	5.3	37	2.0
Mg (Dissolved)	T373	AR	1	mg/l	9	1	9	10	24
Sodium	T147	AR	1	mg/l	9	3	9	6	13
Dissolved SO4(Total)	T285	AR	10	mg/l	<10	<10	<10	<10	<10
Alkalinity expressed as CaCO3	T22	AR	10	mg/l	180	150	140	95	195
Chloride	T253	F	0.2	mg/l	6.4	2.7	8.5	3.7	7.0
Electrical Conductivity	T7	AR	10	μS/cm	480	73	250	240	410
pH	T7	AR			6.6	5.8	6.3	6.0	6.8
Total Organic Carbon	T21	AR	1	mg/l	45	25	21	76	20
Total Petroleum Hydrocarbons	T81	AR	0.01	mg/l	⁽¹³⁾ 0.17	(13) 0.02	(13) 0.03	(13) 0.42	(13) 0.08

SAL Reference: 177418
Project Site: Whitelee Windfarm
Customer Reference: BO627819

Water Analysed as Water Semi-Volatile Organic Compounds (USEPA 625)

			SAL	Reference	177418 001	177418 002	177418 003	177418 004	177418 005
		Custome	r Sample	Reference	WP01	WP02	WP03	WP04	CP02
		Test							
Determinand	Method	Sample	LOD	Units					
Phenol	T16	AR	10	μg/l	19	<10	<10	<10	<10
Bis (2-chloroethyl) ether	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2-Chlorophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
1,3-Dichlorobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
1,4-Dichlorobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
1,2-Dichlorobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Bis (2-chloroisopropyl) ether	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2-methyl phenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
3/4-Methylphenol	T16	AR	10	μg/l	140	<10	<10	<10	<10
Hexachloroethane	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Nitrobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Isophorone	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2-Nitrophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,4-Dimethylphenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Bis (2-chloroethoxy) methane	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,4-Dichlorophenol	T16	AR	10	µg/l	<10	<10	<10	<10	<10
1,2,4-Trichlorobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Naphthalene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
4-Chloroaniline	T16	AR	10	μg/I	<10	<10	<10	<10	<10
Hexachlorobutadiene	T16	AR	10	μg/I	<10	<10	<10	<10	<10
	T16	AR	10		<10	<10	<10	<10	<10
4-Chloro-3-methylphenol				µg/l					
2-Methylnaphthalene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Hexachlorocyclopentadiene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,4,6-Trichlorophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,4,5-Trichlorophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2-Chloronaphthalene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2-Nitroaniline	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Dimethyl phthalate	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,6-Dinitrotoluene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Acenaphthylene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Acenaphthene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
3-Nitroaniline	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,4-Dinitrophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Dibenzofuran	T16	AR	10	μg/l	<10	<10	<10	<10	<10
2,4-Dinitrotoluene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
4-Nitrophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Diethyl phthalate	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Fluorene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
4-Chlorophenyl phenylether	T16	AR	10	μg/l	<10	<10	<10	<10	<10
4-Nitroaniline	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Azobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
4-Bromophenyl phenylether	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Hexachlorobenzene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Pentachlorophenol	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Phenanthrene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Anthracene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Carbazole	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Di-n-butylphthalate	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Fluoranthene	T16	AR	10	µg/l	<10	<10	<10	<10	<10
Pyrene	T16	AR	10	µg/l	<10	<10	<10	<10	<10
Butyl benzylphthalate	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Benzo(a)Anthracene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Chrysene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
	T16	AR	10		<10	<10	<10		<10
Bis (2-ethylhexyl)phthalate	T16			µg/l	<10	1	<10	<10	
Di-n-octylphthalate	<u> </u>	AR	10	µg/l		<10		<10	<10
Benzo(b/k)Fluoranthene	T16	AR	10	µg/l	<10	<10	<10	<10	<10
Benzo(a)Pyrene	T16	AR	10	µg/l	<10	<10	<10	<10	<10
Indeno(123-cd)Pyrene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Dibenzo(ah)Anthracene	T16	AR	10	μg/l	<10	<10	<10	<10	<10
Benzo(ghi)Perylene	T16	AR	10	μg/l	<10	<10	<10	<10	<10

SAL Reference: 177418
Project Site: Whitelee Windfarm
Customer Reference: BO627819

Water Analysed as Water Semi-Volatile Organic Compounds (USEPA 625)

Phenol Bis (2-chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroisthyl) methane 2-Nitrophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene 4-Chloro-3-methylphenol 2-(4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-(4,5-Trichlorophenol 2-(4,5-Trichlorophenol 2-(4,6-Trichlorophenol 2-(4,6-Trichlorophen	T16	Test Sample AR	LOD 10 10 10 10 10 10 10 10 10 1	Units µg/l µg/l µg/l µg/l µg/l µg/l µg/l µg/	<10 <10 <10 <10 <10 <10 <10 <10 <10 <10
Phenol Bis (2-chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroisthyl) methane 2-Nitrophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene 4-Chloro-3-methylphenol 2-(4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-(4,5-Trichlorophenol 2-(4,5-Trichlorophenol 2-(4,6-Trichlorophenol 2-(4,6-Trichlorophen	T16	Sample AR	10 10 10 10 10 10 10 10	hall hall hall hall hall hall hall	<10 <10 <10 <10 <10
Bis (2-chloroethyl) ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroisopropyl) methane 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10 10 10 10 10 10 10	hall hall hall hall hall hall hall hall	<10 <10 <10 <10 <10
2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Chloronaphthalene 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2-Cholintrotoluene	T16	AR	10 10 10 10 10 10 10	рд/I рд/I рд/I рд/I рд/I рд/I	<10 <10 <10 <10
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Chloronaphthalene 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR AR AR AR AR AR AR AR AR	10 10 10 10 10 10	Ha\l ha\l ha\l ha\l	<10 <10 <10
1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene 4-Chlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Chloronaphthalene 2-Chloronaphthalene 2-Nitroaniline 3-Chloronaphthalene 3-Chloritrotoluene	T16	AR AR AR AR AR AR AR AR	10 10 10 10 10	µg/l µg/l µg/l µg/l	<10 <10
1,2-Dichlorobenzene Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol	T16	AR AR AR AR AR AR	10 10 10 10	µg/l µg/l µg/l	<10
Bis (2-chloroisopropyl) ether 2-methyl phenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Chloronaphthalene 2-Nitroaniline	T16 T16 T16 T16 T16 T16 T16 T16 T16	AR AR AR AR AR	10 10 10	µg/l µg/l	
2-methyl phenol 3/4-Methylphenol 3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16 T16 T16 T16 T16 T16 T16	AR AR AR AR	10 10	μg/l	
3/4-Methylphenol Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16 T16 T16 T16 T16	AR AR AR	10		<10
Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16 T16 T16 T16	AR AR		"	<10
Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16 T16 T16	AR	10	μg/l	<10
Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16 T16		10	μg/l	<10
2-Nitrophenol 2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene 1-2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 1-2-Nitroaniline 1-2-Nitroaniline 1-2-Nitroaniline 1-2-Nitroaniline 1-2-Olimethyl phthalate 1-2,6-Dinitrotoluene 1-2-Nitrotoluene 1-2-N	T16	AR	10	μg/l	<10
2,4-Dimethylphenol Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene			10	μg/l	<10
Bis (2-chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-(4,5-Trichlorophenol 2-(5-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene		AR	10	μg/l	<10
2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/I	<10
1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/I	<10
Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/I	<10
4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/I	<10
Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
2-Nitroaniline Dimethyl phthalate 2,6-Dinitrotoluene	T16	AR	10	μg/l	<10
Dimethyl phthalate	T16	AR	10	μg/l	<10
2,6-Dinitrotoluene	T16	AR	10		<10
	T16	AR	10	µg/l	<10
	T16	AR	10	µg/l	<10
' '	T16	AR	10	µg/l	<10
	T16	AR	10	µg/l	
	T16	AR	10	μg/l	<10 <10
· · · · · · · · · · · · · · · · · · ·	T16	AR	10	µg/l	<10
		AR		µg/l	
	T16		10	μg/l	<10
'	T16	AR	10	µg/l	<10
	T16	AR	10	µg/l	<10
	T16	AR	10	μg/l	<10
. , , ,	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	Т16	AR	10	μg/l	<10
· · · · · · · · · · · · · · · · · · ·	Т16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
Pyrene	T16	AR	10	μg/l	<10
• • • • • • • • • • • • • • • • • • • •	T16	AR	10	μg/l	<10
	T16	AR	10	μg/l	<10
Chrysene -	T16	AR	10	μg/l	<10
Bis (2-ethylhexyl)phthalate	T16	AR	10	μg/l	<10
Di-n-octylphthalate	T16	AR	10	μg/l	<10
Benzo(b/k)Fluoranthene	T16	AR	10	μg/l	<10
Benzo(a)Pyrene	T16	AR	10	μg/l	<10
Indeno(123-cd)Pyrene	T16				
Dibenzo(ah)Anthracene		AR	10	μg/l	<10

SAL Reference: 177418
Project Site: Whitelee Windfarm
Customer Reference: BO627819

Water Analysed as Water

Volatile Organic Compounds (USEPA 624)

			SAL	Reference	177418 001	177418 002			177418 00
		Custome	r Sample	Reference	WP01	WP02	WP03	WP04	CP02
Determinand	Method	Test Sample	LOD	Units					
1,1,1,2-Tetrachloroethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1,2-Trichloroethylene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1-Dichloroethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1-Dichloroethylene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,1-Dichloropropene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,2,3-Trichloropropane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,2,4-Trimethylbenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,2-dibromoethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,2-Dichlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,2-Dichloroethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,2-Dichloropropane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,3,5-Trimethylbenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,3-Dichloropropane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
2,2-Dichloropropane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
2-Chlorotoluene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
4-Chlorotoluene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Benzene	T54	AR	1	µg/l	(13) <1	(13) <1	(13) <1	(13) <1	(13) <1
Bromobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Bromochloromethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Bromodichloromethane	T54	AR	1	µg/l	<1	<1	<1	<1	<1
Bromoform	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Bromomethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Carbon tetrachloride	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Chlorobenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Chlorodibromomethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Chloroethane	T54	AR	1		<1	<1	<1	<1	<1
	T54	AR	1	μg/l		<1		<1	
Chloroform				µg/l	<1		<1		<1
Chloromethane	T54	AR	1	µg/l	<1	<1	<1	<1	<1
Cis-1,2-Dichloroethylene	T54	AR	1	µg/l	<1	<1	<1	<1	<1
Cis-1,3-Dichloropropene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Dibromomethane	T54	AR	1	µg/l	<1	<1	<1	<1	<1
Dichlorodifluoromethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Dichloromethane	T54	AR	50	μg/l	<50	<50	<50	<50	<50
EthylBenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Isopropyl benzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
M/P Xylene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
n-Propylbenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
O Xylene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
p-Isopropyltoluene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
S-Butylbenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Styrene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
T-Butylbenzene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Tetrachloroethylene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Toluene	T54	AR	1	μg/l	7	<1	<1	<1	<1
Trans-1,2-Dichloroethene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Trans-1,3-Dichloropropene	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Trichlorofluoromethane	T54	AR	1	μg/l	<1	<1	<1	<1	<1
Vinyl chloride	T54	AR	1	μg/l	<1	<1	<1	<1	<1